• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Thu, 18.07.24

Search results


January 2008
E. Zifman and H. Amitai

Medical screening is not a tangible existent tool in autoimmune disorders as it is in other illnesses. Numerous attempts are made to identify individuals destined to develop an autoimmune disease, including analysis of the genetic background, which along with the immunological profile, may assist in identifying those individuals. If these efforts turn out to be successful they may lead to the possibility of proactive measures that might prevent the emergence of such disorders. This review will summarize the attempts made to pursue autoantibodies specific for the central nervous system as potential predictors of autoimmune neurological disorders.

M. Abu-Shakra, S. Codish, L. Zeller, T. Wolak and S. Sukenik
 
Atherosclerotic disease is common in systemic lupus erythematosus and is the result of multiple pathogenic mechanisms that include traditional risk factors as well as SLE[1]-related factors. Endothelial dysfunction and arterial stiffness contribute significantly to the atherogenic process. Dobutamine stress echocardiogram has not been shown to detect subclinical coronary artery disease; however the high percentage of left ventricular outflow gradient requires further evaluation and follows-up studies.





[1] SLE = systemic lupus erythematosus


December 2007
H.N. Baris, I. Kedar, G.J. Halpern, T. Shohat, N. Magal, M.D. Ludman and M. Shohat

Background: Fanconi anemia complementation group C and Bloom syndrome, rare autosomal recessive disorders marked by chromosome instability, are especially prevalent in the Ashkenazi* Jewish community. A single predominant mutation for each has been reported in Ashkenazi Jews: c.711+4A→T (IVS4 +4 A→T) in FACC[1] and BLMAsh in Bloom syndrome. Individuals affected by both syndromes are characterized by susceptibility for developing malignancies, and we questioned whether heterozygote carriers have a similarly increased risk.

Objectives: To estimate the cancer rate among FACC and BLMAsh carriers and their families over three previous generations in unselected Ashkenazi Jewish individuals.

Methods: We studied 42 FACC carriers, 28 BLMAsh carriers and 43 controls. The control subjects were Ashkenazi Jews participating in our prenatal genetic screening program who tested negative for FACC and BLMAsh. All subjects filled out a questionnaire regarding their own and a three-generation family history of cancer. The prevalence rates of cancer among relatives of FACC, BLMAsh and controls were computed and compared using the chi-square test.

Results: In 463 relatives of FACC carriers, 45 malignancies were reported (9.7%) including 10 breast (2.2%) and 13 colon cancers (2.8%). Among 326 relatives of BLMAsh carriers there were 30 malignancies (9.2%) including 7 breast (2.1%) and 4 colon cancers (1.2%). Controls consisted of 503 family members with 63 reported malignancies (12.5%) including 11 breast (2.2%) and 11 colon cancers (2.2%).

Conclusions: We found no significantly increased prevalence of malignancies among carriers in at least three generations compared to the controls.






* Jews of East European origin



[1] FACC = Fanconi anemia complementation group C


T. Shochat, O. Tzchishinsky, A. Oksenberg and R. Peled

Background: The Pittsburgh Sleep Quality Index is a standardized self-administered questionnaire for the assessment of subjective sleep quality. It has been translated into several languages and is widely used in clinical research studies.

Objectives: To assess the reliability and validity of the Pittsburgh Sleep Quality Index Hebrew translation in a sleep clinic sample and in comparison with the Technion Mini Sleep Questionnaire.

Methods: The PSQI[1] was translated into Hebrew based on standard guidelines. The final Hebrew version (PSQI-H) was administered to 450 patients from two sleep clinics and to 61 healthy adults from the community as a non-clinical control sample. The MSQ[2] was administered to 130 patients in one sleep clinic.

Results: For the PSQI-H[3], Cronbach's-alpha scores for sleep clinic and non-clinical samples were 0.70 and 0.52 respectively and 0.72 combined. Clinical sample scores were significantly higher than the non-clinical group, indicating lower sleep quality for the former. Significant correlations were found between the MSQ subscores and PSQI-H component scores for common underlying constructs.

Conclusions: The PSQI-H differentiated between clinical and non-clinical samples and showed adequate reliability and good validity. It may be used as a standardized tool for the assessment of subjective sleep quality in clinical research studies conducted in the Hebrew-speaking population.






[1] PSQI = Pittsburgh Sleep Quality Index

[2] MSQ = Mini Sleep Questionnaire

[3] PSQI-H = Pittsburgh Sleep Quality Index Hebrew


November 2007
Y. Laitman, B. Kaufmann, E. Levy Lahad, M.Z. Papa and E. Friedman

Background: Germline mutations in BRCA1 and BRCA2 genes account for only 20–40% of familial breast cancer cases. The CHEK2 gene encodes a checkpoint kinase, involved in response to DNA damage, and hence is a candidate gene for breast cancer susceptibility. Indeed, the CHEK2*1100delC truncating mutation was reported in a subset of mostly North European breast cancer families. The rate of the CHEK2*1100delC variant in the Ashkenazi* Jewish population was reported to be 0.3%.

Objectives: To evaluate whether CHEK2 germline mutations contribute to a breast cancer predisposition in Ashkenazi-Jewish high risk families.

Methods: High risk Ashkenazi Jewish women, none of whom was a carrier of the predominant Jewish mutations in BRCA1/BRCA2, were genotyped for germline mutations in the CHEK2 gene by exon-specific polymerase chain reaction followed by denaturing gradient gel electrophoresis and sequencing of abnormally migrating fragments.

Results: Overall, 172 high risk women were genotyped: 75 (43.6%) with breast cancer (average age at diagnosis 49.6 ± 9.6 years, mean ± SD) and 97 asymptomatic individuals (age at counseling 48.3 ± 8.2 years). No truncating mutations were noted and four previously described missense mutations were detected (R3W 1.2%, I157T 1.2%, R180C 0.6% and S428F 5%), one silent polymorphism (E84E 20.5%) and one novel missense mutation (Y424H 1.2%). Segregation analysis of the I157T and S428F mutations (shown to affect protein function) with the cancer phenotype showed concordance for the CHK2*I157T mutation, as did two of three families with the CHK2*S428F mutation.

Conclusions: CHEK2 missense mutations may contribute to breast cancer susceptibility in Ashkenazi Jews.

 






*  Of East European descent


October 2007
G. Levy, L. Goldstein, A. Blachar, S. Apter, E. Barenboim, Y. Bar-Dayan, A. Shamis and E. Atar

A thorough medical inquiry is included in every aviation mishap investigation. While the gold standard of this investigation is a forensic pathology examination, numerous reports stress the important role of computed tomography in the postmortem evaluation of trauma victims. To characterize the findings identified by postmortem CT and compare its performance to conventional autopsy in victims of military aviation mishaps, we analyzed seven postmortem CT examinations. Musculoskeletal injuries accounted for 57.8% of traumatic findings, identified by postmortem CT. The most frequent findings were fractures of the rib (47%), skull (9.6%) and facial bones (8.6%). Abnormally located air accounted for 24% of findings, for which CT was superior (3.5% detected by autopsy, 100% by postmortem CT, P < 0.001).  The performance of autopsy in detecting injuries was superior (autopsy detected 85.8% of all injuries, postmortem CT detected 53.9%, P < 0.001), especially in the detection of superficial lesions (100% detected by autopsy, 10.5% by postmortem CT, P < 0.001) and solid organ injuries (100% by autopsy, 18.5% by postmortem CT, P < 0.001), and in the detection of musculoskeletal injuries (91.3% for autopsy, 90.3% for postmortem CT, P = not significant). Postmortem CT and autopsy have distinct performance profiles, and although the first cannot replace the latter it is a useful complementary examination.

Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel