Y. Shoenfeld, B. Gilburd, M. Abu-Shakra, H. Amital, O. Barzilai, Y. Berkun, M. Blank, G. Zandman-Goddard, U. Katz, I. Krause, P. Langevitz, Y. Levy, H. Orbach, V. Pordeus, M. Ram, Y. Sherer, E. Toubi and Y. Tomer
Y. Shoenfeld, G. Zandman-Goddard, L. Stojanovich, M. Cutolo, H. Amital, Y. Levy, M. Abu-Shakra, O. Barzilai, Y. Berkun, M. Blank, J.F. de Carvalho, A. Doria, B. Gilburd, U. Katz, I. Krause, P. Langevitz, H. Orbach, V. Pordeus, M. Ram, E. Toubi and Y. Sherer
Y. Shoenfeld, M. Blank, M. Abu-Shakra, H. Amital, O. Barzilai, Y. Berkun, N. Bizzaro, B. Gilburd, G. Zandman-Goddard, U. Katz, I. Krause, P. Langevitz, I.R. Mackay, H. Orbach, M. Ram, Y. Sherer, E. Toubi and M.E. Gershwin
E. Zifman and H. Amitai
Medical screening is not a tangible existent tool in autoimmune disorders as it is in other illnesses. Numerous attempts are made to identify individuals destined to develop an autoimmune disease, including analysis of the genetic background, which along with the immunological profile, may assist in identifying those individuals. If these efforts turn out to be successful they may lead to the possibility of proactive measures that might prevent the emergence of such disorders. This review will summarize the attempts made to pursue autoantibodies specific for the central nervous system as potential predictors of autoimmune neurological disorders.
A. Kapitany, Z. Szabo, G. Lakos, N. Aleksza, A. Vegvari. L. Soos, Z. Karanyi, S. Sipka, G. Szgedi and Z. Szekanecz
Background: The presence of anti-cyclic citrullinated peptide autoantibody is highly specific for rheumatoid arthritis. Certain HLA-DR4 (HLA-DRB1*04) alleles, also known as the "shared epitope," are associated with increased susceptibility to RA. In addition, these alleles may also have relevance for disease outcome. Anti-CCP antibody positivity has been associated with the presence of HLA-DR4 alleles in patients with RA. However, there is little information available regarding any relationship between quantitative anti-CCP production (serum anti-CCP concentrations) and the shared epitope.
Objectives: To determine the association between anti-CCP antibody production and various HLA-DRB1 alleles.
Methods: Serum anti-CCP, rheumatoid factor and C-reactive protein levels were assessed in 53 RA patients. All these patients underwent HLA-DRB1 genotyping.
Results: Of the 53 patients 33 (62%) were positive for anti-CCP antibody. We found significant correlations between anti-CCP and RF positivity (chi-square = 6.717, P < 0.01), as well as between anti-CCP and HLA-DRB1*04 positivity (chi-square = 5.828, P < 0.01). There was no correlation between RF positivity and serum levels, CRP serum levels and HLA-DRB1*04 positivity. When quantitatively comparing serum anti-CCP levels with shared epitope positivity, patients carrying one or two copies of HLA-DRB1*04 alleles had significantly higher anti-CCP concentrations (530.0 ± 182.6 U/ml) compared to DRB1*04-negative patients (56.8 ± 27.4 U/ml) (P < 0.01). There was no difference in serum anti-CCP antibody concentrations between patients carrying only one HLA-DRB1*01 allele but no HLA-DRB1*04 allele (12.0 ± 8.6 U/ml) in comparison to SE-negative patients (76.8 ± 56.2 U/ml). Regarding non-SE HLA-DRB1 genotypes, all 6 patients (100%) carrying DRB1*15 alleles and 6 of 7 (85%) patients carrying DRB1*13 were anti-CCP positive. In addition, patients with HLA-DRB1*13 (282.5 ± 23.8 U/ml) and DRB1*15 (398.7 ± 76.2 U/ml) produced significantly more anti-CCP than did any other non-SE HLA-DRB1 subtypes (P < 0.01).
Conclusions: There is significant association between anti-CCP and RF, as well as between anti-CCP and SE positivity in RA. In addition, the presence of one or two copies of HLA-DRB1*04 alleles has been associated with higher serum anti-CCP antibody levels. Thus, patients carrying HLA-DRB1*04 alleles exhibited an overall tenfold increase in serum anti-CCP antibody levels in comparison to HLA-DRB1*04-negative subjects. Increased anti-CCP production may also be associated with other non-SE HLA-DRB1 genotypes, such as DRB1*13 or DRB1*15. In reports by other investigators, both anti-CCP concentrations
E. Mozes, U. Sela and A. Sharabi
M. Abu-Shakra, S. Codish, L. Zeller, T. Wolak and S. Sukenik
Atherosclerotic disease is common in systemic lupus erythematosus and is the result of multiple pathogenic mechanisms that include traditional risk factors as well as SLE-related factors. Endothelial dysfunction and arterial stiffness contribute significantly to the atherogenic process. Dobutamine stress echocardiogram has not been shown to detect subclinical coronary artery disease; however the high percentage of left ventricular outflow gradient requires further evaluation and follows-up studies.