Y. Shoenfeld, B. Gilburd, M. Abu-Shakra, H. Amital, O. Barzilai, Y. Berkun, M. Blank, G. Zandman-Goddard, U. Katz, I. Krause, P. Langevitz, Y. Levy, H. Orbach, V. Pordeus, M. Ram, Y. Sherer, E. Toubi and Y. Tomer
Y. Shoenfeld, G. Zandman-Goddard, L. Stojanovich, M. Cutolo, H. Amital, Y. Levy, M. Abu-Shakra, O. Barzilai, Y. Berkun, M. Blank, J.F. de Carvalho, A. Doria, B. Gilburd, U. Katz, I. Krause, P. Langevitz, H. Orbach, V. Pordeus, M. Ram, E. Toubi and Y. Sherer
Y. Shoenfeld, M. Blank, M. Abu-Shakra, H. Amital, O. Barzilai, Y. Berkun, N. Bizzaro, B. Gilburd, G. Zandman-Goddard, U. Katz, I. Krause, P. Langevitz, I.R. Mackay, H. Orbach, M. Ram, Y. Sherer, E. Toubi and M.E. Gershwin
R.E. Voll, V. Urbonaviciute, M. Herrmann and J.R. Kalden
High mobility group box 1 is a nuclear protein participating in chromatin architecture and transcriptional regulation. When released from cells, HMGB1 can also act as a pro-inflammatory mediator or alarmin. Upon stimulation with lipopolysaccharides or tumor necrosis factor-alpha, HMGB1 is secreted from certain cells such as monocytes/macrophages and fosters inflammatory responses. In addition, HMGB1 is passively released from necrotic cells and mediates inflammation and immune activation. In contrast, during apoptotic cell death, nuclear HMGB1 gets tightly attached to hypo-acetylated chromatin and is not released into the extracellular milieu, thereby preventing an inflammatory response. There is accumulating evidence that extracellular HMGB1 contributes to the pathogenesis of many inflammatory diseases, including autoimmune diseases. Increased concentrations of HMGB1 have been detected in the synovial fluid of patients with rheumatoid arthritis. In animal models of RA, HMGB1 appears to be crucially involved in the pathogenesis of arthritis, since neutralization of HMGB1 significantly ameliorates the disease. Also, in the serum and plasma of patients with systemic lupus erythematosus we detected substantial amounts of HMGB1, which may contribute to the disease process. However, investigations of blood concentrations of HMGB1 and its relevance in human diseases are hindered by the lack of reliable routine test systems.
E. Zifman and H. Amitai
Medical screening is not a tangible existent tool in autoimmune disorders as it is in other illnesses. Numerous attempts are made to identify individuals destined to develop an autoimmune disease, including analysis of the genetic background, which along with the immunological profile, may assist in identifying those individuals. If these efforts turn out to be successful they may lead to the possibility of proactive measures that might prevent the emergence of such disorders. This review will summarize the attempts made to pursue autoantibodies specific for the central nervous system as potential predictors of autoimmune neurological disorders.