• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Fri, 22.11.24

Search results


June 2005
M.A. Abdul-Ghani, J. Kher, N. Abbas and T. Najami
 Background: Type 2 diabetes is usually associated with obesity, and both conditions are frequently detected in the Arab population in Israel. Recent studies have demonstrated that diabetes can be prevented by a change in lifestyle.

Objective: To assess the prevalence of diabetes in an Arab community, the contribution of obesity to diabetes development, and the therapeutic potential of a preventive program.

Methods: Data were obtained from the medical files of diagnosed diabetes patients attending a primary care clinic in an Arab village in northern Israel.

Results: Type 2 diabetes was diagnosed in 323 patients of whom 63% were women. The prevalence of diabetes below age 65 years was significantly higher among women than men. Diabetic women were younger than men at diagnosis (48.27 vs. 59.52 respectively) and were found to have higher body mass index (34.35 vs. 30.04 respectively) at diagnosis. The age at diagnosis of diabetes was strongly correlated with BMI[1] (r = 0.97, P < 0.0001).

Conclusions: Women of Arab origin are at higher risk of developing type 2 diabetes compared to men. Obesity in women seems to be associated with higher diabetes risk as well as earlier appearance of the disease. Therefore, they will have the disease for longer and, consequently, a higher risk for complications.


 





[1] BMI = body mass index


Z. Laron, H. Lewy, I. Wilderman, A. Casu, J. Willis, M.J. Redondo, I. Libman, N. White and M. Craig
 Background: Type 1 childhood-onset diabetes mellitus has a multifactorial origin involving an interplay between genetic and environmental factors. We have previously shown that many children who subsequently develop T1DM[1] have a different seasonality of birth than the total live births of the same population, supporting the hypothesis that perinatal viral infection during the yearly epidemics are a major trigger for the autoimmune process of T1DM.

Objectives: To compare the seasonality of children with T1DM in different populations around the world for which data were available.

Methods: We analyzed large cohorts of T1DM patients with a clinical disease onset before age 14 or 18 years.

Results: We found a seasonality pattern only in ethnically homogenous populations (such as Ashkenazi Jews, Israeli Arabs, individuals in Sardinia and Canterbury, New Zealand, and Afro-Americans) but not in heterogeneous populations (such as in Sydney, Pittsburgh and Denver).

Conclusions: Our findings attempt to explain the controversial data in the literature by showing that ethnically heterogeneous populations with a mixture of patients with various genetic backgrounds and environmental exposures mask the different seasonality pattern of month of birth that many children with diabetes present when compared to the general population.


 





[1] T1DM = type 1 childhood-onset diabetes mellitus


March 2005
M.A. Abdul-Ghani, M. Sabbah, B. Muati, N. Dakwar, H. Kashkosh, O. Minuchin, P. Vardi, I. Raz, for the Israeli Diabetes Research Group
 Background: Increased insulin resistance, which is associated with obesity, is believed to underlie the development of metabolic syndrome. It is also known to increase the risk for the development of glucose intolerance and type 2 diabetes. Both conditions are recognized as causing a high rate of cardiovascular morbidity and mortality.

Objectives: To assess the prevalence of metabolic syndrome and different glucose intolerance states in healthy, overweight Arab individuals attending a primary healthcare clinic in Israel.

Methods: We randomly recruited 95 subjects attending a primary healthcare clinic who were healthy, overweight (body mass index >27) and above the age of 40. Medical and family history was obtained and anthropometric parameters measured. Blood chemistry and oral glucose tolerance test were performed after overnight fasting.

Results: Twenty-seven percent of the subjects tested had undiagnosed type 2 diabetes according to WHO criteria, 42% had impaired fasting glucose and/or impaired glucose tolerance and only 31% had a normal OGTT[1]. Metabolic syndrome was found in 48% according to criteria of the U.S. National Cholesterol Education Program, with direct correlation of this condition with BMI[2] and insulin resistance calculated by homeostasis model assessment. Subjects with metabolic syndrome had a higher risk for abnormality in glucose metabolism, and the more metabolic syndrome components the subject had the higher was the risk for abnormal glucose metabolism. Metabolic syndrome predicted the result of OGTT with 0.67 sensitivity and 0.78 specificity. When combined with IFG[3], sensitivity was 0.83 and specificity 0.86 for predicting the OGTT result.

Conclusions: According to our initial evaluation approximately 70% of the overweight Arab population in Israel has either metabolic syndrome or abnormal glucose metabolism, indicating that they are at high risk to develop type 2 diabetes and cardiovascular morbidity and mortality. This population is likely to benefit from an intervention program.

_________________________

[1] OGTT = oral glucose tolerance test

[2] BMI = body mass index

[3] IFG = impaired fasting glucose
 

February 2005
M.S. Shapiro, Z. Abrams and N. Lieberman

Background: Repaglinide, a new insulin secretagogue, is purported to be as effective as sulphonylurea but is less hypoglycemic-prone.

Objectives: To assess the efficacy of repaglinide and its proclivity for hypoglycemia in a post-marketing study.

Methods: The study group comprised 688 patients, aged 26–95 years, clinically diagnosed with non-insulin-dependent type 2 diabetes. The patients were divided into three groups based on previous therapy: a) sulphonylurea-treated (group 1, n=132); b) metformin with or without sulphonylurea where sulphonylurea was replaced with repaglinide. (group 2, n=302); and c) lifestyle modification alone (drug-naïve) (group 3, n=254). At initiation of the study, all patients were transferred from their current treatment to repaglinide. Only patients in group 2, with combined sulphonylurea plus metformin, continued with metformin plus repaglinide. Fasting blood sugar, hemoglobin A1c and weight were measured at study entry and 4–8 weeks following repaglinide therapy. A questionnaire documented the number of meals daily and the presence of eating from fear of hypoglycemia.

Results: The fasting blood sugar level of the entire cohort dropped from 191 ± 2.4 to 155 ± 2.0 mg/dl (P < 0.0001); HbA1c from 8.8 ± 0.1 to 7.7 ± 0.1% (P < 0.0001). The drop of HbA1c in groups 1, 2 and 3 respectively were: 1.04 ± 0.22% (P < 0.0001), 1.14 ± 0.24% (P < 0.0001), and 1.51 ± 0.31% (P = 0.0137). Weight dropped from 81 ± 0.7 to 80.2 ± 0.7 kg (P < 0.0001), and eating from fear of hypoglycemia from 157 to 97 (P < 0.001). The daily number of meals decreased from 2.9 ± 0.4 to 2.4 ± 0.4 (P < 0.001). No serious adverse reactions occurred during the study.

Conclusions: Repaglinide is an effective oral hypoglycemic agent taken either as monotherapy or combination therapy. There is less eating to avoid hypoglycemia, fewer meals consumed, and weight loss.

 
 

M.S. Shapiro, Z. Abrams and N. Lieberman

Background: Repaglinide, a new insulin secretagogue, is purported to be as effective as sulphonylurea but is less hypoglycemic-prone.

Objectives: To assess the efficacy of repaglinide and its proclivity for hypoglycemia in a post-marketing study.

Methods: The study group comprised 688 patients, aged 26–95 years, clinically diagnosed with non-insulin-dependent type 2 diabetes. The patients were divided into three groups based on previous therapy: a) sulphonylurea-treated (group 1, n=132); b) metformin with or without sulphonylurea where sulphonylurea was replaced with repaglinide. (group 2, n=302); and c) lifestyle modification alone (drug-naïve) (group 3, n=254). At initiation of the study, all patients were transferred from their current treatment to repaglinide. Only patients in group 2, with combined sulphonylurea plus metformin, continued with metformin plus repaglinide. Fasting blood sugar, hemoglobin A1c and weight were measured at study entry and 4–8 weeks following repaglinide therapy. A questionnaire documented the number of meals daily and the presence of eating from fear of hypoglycemia.

Results: The fasting blood sugar level of the entire cohort dropped from 191 ± 2.4 to 155 ± 2.0 mg/dl (P < 0.0001); HbA1c from 8.8 ± 0.1 to 7.7 ± 0.1% (P < 0.0001). The drop of HbA1c in groups 1, 2 and 3 respectively were: 1.04 ± 0.22% (P < 0.0001), 1.14 ± 0.24% (P < 0.0001), and 1.51 ± 0.31% (P = 0.0137). Weight dropped from 81 ± 0.7 to 80.2 ± 0.7 kg (P < 0.0001), and eating from fear of hypoglycemia from 157 to 97 (P < 0.001). The daily number of meals decreased from 2.9 ± 0.4 to 2.4 ± 0.4 (P < 0.001). No serious adverse reactions occurred during the study.

Conclusions: Repaglinide is an effective oral hypoglycemic agent taken either as monotherapy or combination therapy. There is less eating to avoid hypoglycemia, fewer meals consumed, and weight loss.
 

December 2004
R. Ness-Abramof, D. Nabriski and C.M. Apovian

The prevalence of obesity worldwide has risen sharply during the last four decades. The etiology of obesity is complex and includes a host of genetic influences in addition to the overconsumption of energy coupled with a sedentary lifestyle. Obesity is known to cause or exacerbate many co-morbid conditions such as diabetes, hypertension, dyslipidemia, coronary heart disease, stroke, certain cancers, arthritis and obstructive sleep apnea. Modest weight losses of 5–10% of actual weight are related to significant improvements in co-morbid conditions, but unfortunately the rate of recidivism with short-term therapy for obesity is high. The recent recognition of obesity as a chronic disease that should be treated with long-term programs and possibly with polypharmacy, and the alarming increase in its prevalence, have prompted extensive research and the development of new pharmacotherapy.

May 2004
M.D. Walker

Since both major forms of diabetes involve inadequate function of pancreatic beta cells, intensive research is ongoing to better understand how beta cells perform their complex role of secreting the hormone insulin in response to physiologic needs. Identification and characterization of pancreatic transcription factors has revealed that they play a crucial role not only in maintenance of mature beta-cell function but also at multiple stages in pancreatic development. Furthermore, recent reports have revealed their potential to convert non-beta cells into insulin-producing cells, which in some cases can function to ameliorate diabetes in experimental animals. The ability to translate these successes to the clinic will require a detailed mechanistic understanding of the molecular basis of action of these proteins. Specific gene regulation in beta cells involves the action of multiple transcription factors recruited to the promoter and functioning synergistically to activate transcription, in part through recruitment of co-activator proteins and components of the basal transcriptional machinery. In addition, the process involves modification of chromatin structure, the details of which are beginning to be elucidated. Our ability to modulate gene expression patterns may lead to developing ways to provide an unlimited supply of functional beta cells for transplantation, permitting a dramatic improvement in therapeutic options for diabetes.

S. Efrat

Type 1 diabetes mellitus is caused by an autoimmune destruction of pancreatic islet beta cells, leading to insulin deficiency. Beta-cell replacement is considered the optimal treatment for type 1 diabetes, however it is severely limited by the shortage of human organ donors. An effective cell replacement strategy depends on the development of an abundant supply of beta cells and their protection from recurring immune destruction. Stem/progenitor cells, which can be expanded in tissue culture and induced to differentiate into multiple cell types, represent an attractive source for generation of cells with beta-cell properties: insulin biosynthesis, storage, and regulated secretion in response to physiologic signals. Embryonic stem cells have been shown to spontaneously differentiate into insulin-producing cells at a low frequency, and this capacity could be further enhanced by tissue culture conditions, soluble agents, and expression of dominant transcription factor genes. Progenitor cells from fetal and adult tissues, such as liver and bone marrow, have also been shown capable of differentiation towards the beta-cell phenotype in vivo, or following expression of dominant transcription factors in vitro. These approaches offer novel ways for generation of cells for transplantation into patients with type 1 diabetes.

I. Furstenberg Liberty, D. Todder, R. Umansky and I. Harman-Boehm
R.A. Slater, Y. Ramot, A. Buchs and M.J. Rapoport
Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel