Manfred S. Green, MD, PhD and Zalman Kaufman, MSc
The appearance of “new” infectious diseases, the reemergence of “old” infectious diseases, and the deliberate introduction of infectious diseases through bioterrorism has highlighted the need for improved and innovative infectious disease surveillance systems. A review of publications reveals that traditional current surveillance systems are generally based on the recognition of a clear increase in diagnosed cases before an outbreak can be identified. For early detection of bioterrorist-initiated outbreaks, the sensitivity and timeliness of the systems need to be improved. Systems based on syndromic surveillance are being developed using technologies such as electronic reporting and the internet. The reporting sources include community physicians, public health laboratories, emergency rooms, intensive care units, district health offices, and hospital admission and discharge systems. The acid test of any system will be the ability to provide analyses and interpretations of the data that will serve the goals of the system. Such analytical methods are still in the early stages of development.
Amir Vardi, MD, Inbal Levin, RN, Haim Berkenstadt, MD, Ariel Hourvitz, MD, Arik Eisenkraft, MD, Amir Cohen, MD and Amital Ziv, MD
With chemical warfare becoming an imminent threat, medical systems need to be prepared to treat the resultant mass casualties. Medical preparedness should not be limited to the triage and logistics of mass casualties and first-line treatment, but should include knowledge and training covering the whole medical spectrum. In view of the unique characteristics of chemical warfare casualties the use of simulation-assisted medical training is highly appropriate. Our objective was to explore the potential of simulator-based teaching to train medical teams in the treatment of chemical warfare casualties. The training concept integrates several types of skill-training simulators, including high tech and low tech simulators as well as standardized simulated patients in a specialized simulated setting. The combined use of multi-simulation modalities makes this maverick program an excellent solution for the challenge of multidisciplinary training in the face of the looming chemical warfare threat.
Ronen Rubinshtein, MD, Eyal Robenshtok, MD, Arik Eisenkraft, MD, Aviv Vidan, MD and Ariel Hourvitz, MD
Recent events have significantly increased concern about the use of biologic and chemical weapons by terrorists and other countries. Since weapons of mass destruction could result in a huge number of casualties, optimizing our diagnostic and therapeutic skills may help to minimize the morbidity and mortality. The national demands for training in medical aspects of nuclear, biologic and chemical warfare have increased dramatically. While Israeli medical preparedness for non-conventional warfare has improved substantially in recent years especially due to extensive training programs, a standardized course and course materials were not available until recently. We have developed a core curriculum and teaching materials for a 1 or 2 day modular course, including printed materials.
Jacob T. Cohen, MD, Gil Ziv, MD, PhD, Joseph Bloom, MD, Daniel Zikk, MD, Yoram Rapoport, MD and Mordechai Z. Himmelfarb, MD
Background: The ear is the most frequent organ affected during an explosion. Recognition of possible damage to its auditory and vestibular components, and particularly the recovery time of the incurred damage, may help in planning the optimal treatment strategies for the otologic manifestations of blast injury and preventing deleterious consequences.
Objective: To report the results of the oto-vestibular initial evaluation and follow-up of 17 survivors of a suicidal terrorist attack on a municipal bus.
Methods: These 17 patients underwent periodic ear inspections and pure tone audiometry for 6 months. Balance studies, consisting of electronystagmography (ENG) and computerized dynamic posturography (CDP) were performed at the first time possible.
Results: Complaints of earache, aural fullness and tinnitus resolved, whereas dizziness persisted in most of the patients. By the end of the follow-up, 15 (55.6%) of the eardrum perforations had healed spontaneously. Hearing impairment was detected in 33 of the 34 tested ears. Recovery of hearing was complete in 6 ears and partial in another 11. ENG and CDP were performed in 13 patients: 5 had abnormal results on CDP while the ENG was normal in all the patients. The vertigo in seven patients resolved in only one patient who was free of symptoms 1 month after the explosion.
Conclusion: Exposure to a high powered explosion in a confined space may result in severe auditory and vestibular damage. Awareness of these possible ear injuries may prevent many of the deleterious consequences of such injuries.