Jane Zhao, MD, Hsiao-Nan Hao, MD and William D. Lyman, PhD
Background: Experimental and clinical protocols are being developed for the cryopreservation of human hematopoietic progenitor cells. However, the effect of these procedures on the potential for HPC to repopulate bone marrow is unknown.
Objectives: To examine the effect of cryopreservation on the ability of fetal human liver HPC, which include CD34+ cells and long-term culture-initiating cells, to repopulate immunodeficient non-obese diabetic/severe combined immunodeficiency mouse bone marrow.
Methods: Groups of sublethally irradiated NOD/SCID mice were injected intravenously with cryopreserved or freshly isolated fetal human liver HPC.
Results: Seven weeks after transplantation, flow cytometric analysis of bone marrow samples showed that mice that received the transplanted cells (either cryopreserved or freshly isolated) demonstrated both lymphoid and myeloid differentiation as well as the retention of a significant fraction of CD34+ cells. Conclusions: Cryopreserved fetal human liver-derived HPC appear to be capable of initiating human cell engraftment in NOD/SCID mouse bone marrow and open the possibility of using cryopreserved fetal human liver HPC for gene manipulation, gene transfusion therapy, and transplantation purposes.
_______________________________
Jorge Rouvier, MD, Claudio Gonzalez, MD, Alejandra Scazziota, PhD and Raul Altman, MD
Background: Elevated fibrinogen, considered an independent risk factor for coronary disease, stratifies an individual as high risk for coronary disease. A risk marker requires little intra-individual variability during a long period.
Objectives: To establish intra-individual variability of fibrinogen levels in patients with coronary disease.
Methods: We investigated fibrinogen levels prospectively in four blood samples drawn from 267 patients with a history of arterial disease (arterial group) and from 264 patients with cardiac valve replacements (valvular group). The samples were taken during the course of 78.7 and 78.8 days from the arterial and valvular groups respectively.
Results: Marked intra-individual dispersion with a reliability coefficient of 0.541 was found in the arterial group and 0.547 in the valvular group. The Bland-Altman test showed low probability to obtain similar results in different samples from the same individual. These results show large intra-individual variability, with similarities in the arterial as well as in the valvular group.
Conclusions: It is not possible to stratify a patient by a specific fibrinogen dosage.
Avi Katz, MD, David J. Van-Dijk, MD, Helena Aingorn, PhD, Arie Erman, MD, Malcolm Davies, MD, David Darmon, MD, Hagit Hurvitz, MD and Israel Vlodavsky, PhD
Background: Decreased heparan sulfate proteoglycan content of the glomerular basement membrane has been described in proteinuric patients with diabetic nephropathy. Heparanase is an endo-b-D-glucuronidase that cleaves negatively charged heparan sulfate side chains in the basement membrane and extracellular matrix.
Objectives: To investigate whether urine from type I diabetic patients differs in heparanase activity from control subjects and whether resident glomerular cells could be the source of urinary heparanase.
Methods: Using soluble 35S-HSPG and sulfate-labeled extracellular matrix we assessed heparanase activity in human glomerular epithelial cells, rat mesangial cells, and urine from 73 type I diabetic patients. Heparanase activity resulted in the conversion of a high molecular weight sulfate-labeled HSPG into heparan sulfate degradation fragments as determined by gel filtration analysis.
Results: High heparanase activity was found in lysates of both epithelial and mesangial cells. Immunohistochemical staining localized the heparanase protein to both glomeruli capillaries and tubular epithelium. Heparanase activity was detected in the urine of 16% and 25% of the normoalbuminuric and microalbuminuric diabetic patients, respectively. Urine from 40 healthy individuals did not posses detectable heparanase. Urinary heparanase activity was associated with worse glycemic control.
Conclusion: We suggest that heparanase enzyme participates in the turnover of glomerular HSPG. Hyperglycemia enhances heparanase activity and/or secretion in some diabetic patients, resulting in the loss of albumin permselective properties of the GBM.
________________________
HSPG = heparan sulfate proteoglycan
GBM = glomerular basement membrane
David G. Motto, MD, PhD, James A. Williams, MD and Laurence A. Boxer, MD
Background: Chronic childhood autoimmune hemolytic anemia is an uncommon disorder that is associated with significant morbidity. Treatment with high dose steroids, splenectomy and frequent blood transfusions results in a myriad of complications including growth failure, bone demineralization, Cushing’s syndrome, immunosuppression, and transfusional hemosiderosis.
Objectives: To investigate the efficacy of the monoclonal anti-CD20 antibody, rituximab, in treating children with AIHA.
Methods: Four children with chronic AIHA, including two with prior splenectomy, who were dependent on high dose steroids and refractory to other immunosuppressive regimens were treated with four to six weekly doses of rituximab at a dose of 375 mg/m2.
Results: All four patients became transfusion-independent and were taken off prednisone completely. Adverse effects included infusion-related reactions that were mild, and infectious complications of Pneumocystis carinii pneumonia and varicella pneumonia.
Conclusions: Treatment with rituximab appears promising for refractory AIHA; it may obviate the need for prednisone and may result in sustained disease remissions in some patients.
Yair Galili, MD and Arie Bass, MD
Philip Vaughan, MBBS, Jeremy Gardner, MBBS, Francesca Peters, MBBS, MRCP and Rosalind Wilmott, RGN
Jacob Cohen, MSc, Lia Supino-Rosin, MSc, Eran Barzilay, BSc, Ronit Eisen-Lev, DMD, Moshe Mittelman, MD and Drorit Neumann, PhD
Eitan M. Gross, MD, Phillip D. Levin, MB, Chir and Ezekiel H. Landau, MD
Ami Neuberger, MD, Sigal Fishman, MD and Ahuva Golik, MD
Martin H. Ellis, MD and Rivka Zissin, MD
Gabriel S. Breuer, MD, David Raveh, MD, Bernard Rudensky, PhD, Raina Rosenberg, MD, Rose Ruchlemer, MD and Jonathan Halevy, MD