• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Thu, 18.07.24

Search results


March 2003
R. Eliakim and F. Karmeli

Background: Chronic nicotine administration has a dual effect on inflammatory bowel disease: augmentation of jejunitis and amelioration of colitis. We previously showed that chronic nicotine administration has divergent regional effects on small bowel and colonic mucosal mediators and blood flow.

Objective: To examine the effects of nicotine administration on cytokine levels in normal rat small bowel mucosa, colonic mucosa, and blood.

Methods: Male Sprague-Dawley rats weighing 200–250 g were given nicotine (12.5 μg/ml) that was dissolved in tap water. Rats were sacrificed on days 1, 2, 7 and 14 after nicotine initiation; blood was withdrawn, and small bowel and colon were resected, washed and weighed. Mucosal scrapings were extracted in 2 ml Krebs-Hemselest buffer for determination of interleukins-2, 6 and 10 using the Biosource International Immunoassay Kit.

Results: Nicotine decreased IL-10[1] and increased IL-6 levels in small bowel mucosa (from 3.5 ±  0.5 to 0.4 ± 0.1 pg/ml and from 1.9±0.4 to 13.6±0.4 pg/ml respectively; P < 0.05). Nicotine decreased IL-2 levels in the colon (from 15.8±3.0 to 7.9±1.0 pg/ml; P < 0.05), having no effect on IL-10 or IL-6 levels. Rats treated with nicotine had lower IL-6 and IL-2 blood levels compared to control rats.

Conclusions: Nicotine has different regional effects on small bowel and colonic cytokine mucosal levels, which might explain some of its opposite effects on small bowel and colonic inflammation.






[1] IL = interleukin


I. Sukhotnik, L. Siplovich, M.M. Krausz and E. Shiloni

Intestinal adaptation is the term applied to progressive recovery from intestinal failure following a loss of intestinal length. The regulation of intestinal adaptation is maintained through a complex interaction of many different factors. These include nutrients and other luminal constituents, hormones, and peptide growth factors. The current paper discusses the role of peptide growth factors in intestinal adaptation following massive small bowel resection. This review focuses on the mechanisms of action of peptide growth factors in intestinal cell proliferation, and summarizes the effects of these factors on intestinal regrowth in an animal model of short bowel syndrome.

Click on the icon on the upper right hand side for the article by Yaron Niv, MD. IMAJ 2003: 5: March: 198-200
February 2003
Y. Nevo, F. Muntoni, C. Sewry, C. Legum, M. Kutai, S. Harel and V. Dubowitz

Background: The prediction that Duchenne muscular dystrophy patients have out-of-frame deletions and Becker muscular dystrophy patients have in-frame deletions of the dystrophin gene holds well in the vast majority of cases. Large in-frame deletions involving the rod domain only have usually been associated with mild (BMD[1]) phenotype.

Objectives: To describe unusual cases with large in-frame deletions of the rod-shaped domain of the dystrophin gene associated with severe (Duchenne) clinical phenotype

Methods: Screening for dystrophin gene deletion was performed on genomic DNA by using multiplex polymerase chain reaction. Needle muscle biopsies from the quadriceps were obtained using a BergstrÖm needle. The biopsies were stained with histologic and histochemical techniques as well as monoclonal antibodies to dystrophin 1, 2 and 3.

Results: In three children with large in-frame deletions of the rod domain (exons 10–44, 13–40 and 3–41), early-onset weakness and a disease course suggested the DMD[2] phenotype.

Conclusions: This observation emphasizes the uncertainty in predicting the Becker phenotype in a young patient based on laboratory evaluation, and that the clinical picture should always be considered.






[1] BMD = Becker muscular dystrophy



[2] DMD = Duchenne muscular dystrophy


E. Gal, G. Abuksis, G. Fraser, R. Koren, C. Shmueli, Y. Yahav and Y. Niv

Background: The 13C-urea breath test is the best non-invasive test to validate Helicobacter pylori eradication. Serology is unreliable for this purpose due to the slow and unpredictable decline in the antibodies titer.

Objectives: To characterize a specific group of patients who were treated for H. pylori and tested for successful eradication by 13C-UBT[1] in our central laboratory and to correlate the eradication success rate with specific drug combinations, and to evaluate other factors that may influence eradication success.

Methods: 13C-UBT for H. pylori was performed in the central laboratory of Clalit Health Services. The breath test was performed by dedicated nurses in 25 regional laboratories and the samples were analyzed by a mass spectrometer (Analytical Precision 2003, UK). The physician who ordered the test completed a questionnaire computing demographic data (age, gender, origin), indication, use of non-steroidal anti-inflammatory drugs or proton pump inhibitor, and combination of eradication therapy.

Results: Of the 1,986 patients tested to validate successful H. pylori eradication, 539 (27%) had a positive test (treatment failure group) and 1,447 (73%) had a negative test (successful treatment group). Male gender, older age and European-American origin predicted better eradication rates. Dyspeptic symptoms and chronic PPI[2] therapy predicted treatment failure. Combination therapy that included clarithromycin had a higher eradication rate than a combination containing metronidazole. The combination of omeprazole, amoxicillin and clarithromycin achieved an eradication rate of 81.3%, which was better than the combination of omeprazole, metronidazole and clarithromycin (77.2%) (not significant), or of omeprazole, amoxicillin and metronidazole (66.1%) (P < 0.01).

Conclusion: Gender, age, origin, dyspepsia and PPI therapy may predict H. pylori eradication results. Our findings also support an increase in metronidazole resistance of H. pylori strains in Israel, as described in other countries. We recommend combination therapy with omeprazole, amoxicillin and clarithromycin and avoidance of metronidazole as one of the first-line eradication drugs.






[1]13C-UBT[1]  = 13C-urea breath test



[2] PPI = proton pump inhibitor


D. Lev-Chelouche, B. Sagie, A. Keidar, J. M. Klausner and A. Szold

Background: Developments in laparoscopic surgery have rendered it an efficient tool for many complex surgical procedures. In the last few years, laparoscopic adrenalectomy has become a more viable option for removal of adrenal pathology, with many surgeons preferring it to the conventional open technique.

Objectives: To describe the indications, technique, complications and follow-up of patients undergoing laparoscopic adrenalectomy in our department.

Methods: The hospital files of 30 patients who underwent the procedure were reviewed. There were 19 females and 11 males with a mean age of 45 years. Indications for surgery differed and included hypersecreting adenoma, pheochromocytoma, suspected malignancy, and incidentaloma.

Results: Of the 31 laparoscopic adrenalectomies performed, 11 were right, 18 were left, and 1 was bilateral. The conversion rate to an open procedure was 3%. The mean duration of procedure was 120 minutes. Only one patient required blood transfusion. Complications occurred in 20% of patients, all reversible. There was no mortality. Mean hospitalization duration was 3.4 days, and median follow-up 17 months. There were no late complications. All patients operated on for benign diseases are alive.

Conclusions: Laparoscopic adrenalectomy appears to be a useful tool for the treatment of a range of adrenal pathologies.

Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel