• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Tue, 15.04.25

Search results


November 2009
U. Nussinovitch, D. Ezra, N. Nussinovitch and Y. Shoenfeld
April 2009
S. Policker, W. Haddad and I. Yaniv

Background: The TANTALUS System (MetaCure Ltd.) is a minimally invasive implantable device for the treatment of type 2 diabetes. The system detects food intake by sensing gastric electrical variations and applies electrical stimulation to the gut synchronized to natural gastric activity. The system is commercially available in Europe and Israel and is in clinical trials in the United States. It has been tested in 132 patients worldwide to date.

Objectives: To re-analyze previously reported data from different studies. This retrospective analysis of the type 2 diabetes subpopulation analyzed the expected benefit and characterize the significance of baseline A1c in the determination of the expected clinical outcome.

Methods: From the total cohort of 132 patients implanted with the TANTALUS device in 10 different centers in Europe and the U.S., 50 subjects (27 females, 23 males) who were obese with uncontrolled T2DM[1] on a stable regime of oral medication for 3 months prior to implant were identified. This population had similar inclusion/exclusion criteria as well as treatment protocols and were all treated for at least 24 weeks. The analysis was based on the A1c change compared to baseline.

Results: Data after 24 weeks demonstrate a reduction in A1c in 80% of the patients with average drop in A1c of 1.1 ± 0.1%. The average weight loss was 5.5 ± 0.7 kg.

Conclusions: The results suggest that the TANTALUS stimulation regime can improve glucose levels and induce moderate weight loss in obese T2DM patients.






[1] T2DM = type 2 diabetes mellitus



 
December 2008
V. Gazit, D. Tasher, A. Hanukoglu, Z. Landau, Y. Ben-Yehuda, E. Somekh, I. Dalal

Background: Insulin-dependent diabetes mellitus is dominated by a Th1 response whereas atopic diseases such as asthma, eczema and allergic rhinitis are characterized by a Th2 response. Because it is known that Th1 and Th2 cells reciprocally counteract each other, it can be speculated that the prevalence of Th2-mediated diseases is lower in patients with a Th1-mediated disease.

Objectives: To compare the prevalence of atopic diseases among children with IDDM[1] and age-matched controls.

Methods: The study group comprised 65 children with IDDM attending the pediatric endocrinology clinic at the Wolfson Medical Center. The control group consisted of 74 non-diabetic children who presented at the emergency room due to an acute illness (burns, abdominal pain, fever, head trauma). Patients were asked to complete a detailed questionnaire on their history of personal and familial atopic and autoimmune diseases. In addition, a total serum immunoglobulin E concentration and the presence of IgE[2] antibodies to a panel of relevant inhalant allergens were analyzed.

Results: Children with IDDM and their first-degree relatives had a significantly higher prevalence of other autoimmune diseases such as thyroiditis and celiac as compared to controls. The two groups had a similar prevalence of atopic diseases with respect to history, total serum IgE, or the presence of IgE antibodies to a panel of relevant inhalant allergens.

Conclusions: The prevalence of atopic diseases in IDDM patients was similar to that in the normal population. Our results suggest that the traditional Th1/Th2 theory to explain the complexity of the immune response is oversimplified. 

 

 






[1] IDDM = insulin-dependent diabetes mellitus

[2] Ig = immunoglobulin


October 2008
A. Kesler, L. Berkner, M. Sadeh, R. Levite and D. Varssano

Background: Ocular hypotony is a common unexplained feature of myotonic dystrophy type 1. Spuriously low applanation tonometric readings can be caused by thin corneas, flat corneal curvature and corneal edema.

Objectives: To determine whether structure abnormalities of the cornea cause spuriously low readings in applanation tonometry.

Methods: We utilized a TMS-2N corneal topographer, a NonconRobo SP-6000 Specular microscope and a Corneo-Gage Plus 1A Pachymeter to examine seven patients with DM1[1] and eight healthy controls. Intraocular pressure, central corneal thickness, and endothelial cell density were measured, and simulated keratometry readings were made. Cornea guttata and irregularity of corneal topography patterns were also sought.

Results: The mean intraocular pressure was 9.86 ± 1.29 mmHg for all patients (intraocular operated and non‑operated eyes) and 12.88 ± 1.89 mmHg for the controls (P = 0.000021, two-tailed t-test). Central corneal thickness was 530.57 ± 35.30 micron for all patients and 535.00 ± 39.62 micron for the controls (P = 0.75, two-tailed t-test). Endothelial cell density was 3164 ± 761 cells/mm2 for all patients and 3148 ± 395 cells/mm2 for the controls (P = 0.94, two-tailed t-test). Simulated keratometry readings were similar in both groups when the operated eyes were excluded. Cornea guttata and irregularity of corneal topography patterns were also noted in the study group.

Conclusions: Corneal thickness, corneal curvature and corneal hydration were within normal limits and thus were not the cause for the low applanation tonometry reading in DM1. The presence of cornea guttata and irregularity of corneal topography patterns in DM1 warrants further investigation. 






[1] DM1 = myotonic dystrophy type 1


September 2008
A. Brautbar, A. Abrahamov, I. Hadas-Halpern, D. Elstein and A. Zimran

Background: With regard to ethnic predilections for Gaucher disease, the most common storage disorder, Ashkenazi Jews are at risk for the non-neuronopathic form (type I), Norbottnian Swedes are at risk for the sub-acute neuronopathic form (type III), and perhaps Arabs are at risk for the very rare cardiac variant of the sub-acute neuronopathic form (type IIIc) for which there is a relatively tight genotype-phenotype correlation. Type II, the acute infantile form, being the rarest form, has not been associated with any ethnic predilection.

Objectives: To examine whether Arab ethnicity influences the Gaucher phenotype.

Methods: We reviewed the records of all Arab patients in a referral clinic of 586 patients in Israel.

Results: There were 46 patients (7.8%) of Arab ethnicity: 23 (50%) had type I disease, 16 (34.8%) had type IIIc disease, 4 (8.7%) had type IIIb disease, and 3 (6.5%) had type II disease. Type IIIc disease was characterized by genotype-phenotype correlation with homozygosity for the D409H (1342C) mutation. All five Bedouin patients (10.9%) had the R48W (C259T) mutation on at least one allele.

Conclusions: For all genotypes, disease severity among Arab patients was relatively similar to that reported among other Caucasian patients. Apparently Arab ethnicity does not impact phenotypic expression in Gaucher disease in a unique manner. The predilection for type IIIc may be a result of consanguinity.
 

July 2008
A. Mager, N. Koren-Morag, M. Shohat, A. Dadashev, R. Kornowski, A. Battler and D. Hasdai

Background: The C677T mutation in the methylenetetrahydrofolate reductase (MTHFR) gene is associated with early onset of coronary artery disease in some populations with certain ethnic backgrounds. However, data on its effect on CAD[1] development in women are limited and conflicting.

Objectives: To investigate the effects of the MTHFR C677T mutation and ethnicity on the development and age at onset of CAD in women in Israel.

Methods: The sample included 135 Jewish women with well-documented CAD (62 Ashkenazi, 44 Oriental and 29 of other origins) in whom CAD symptoms first developed at age ≤ 65 years. DNA samples from 235 women served as the control.

Results: CAD symptoms developed later in Ashkenazi than in Oriental women or women of other origins (51.0 ± 7.0 years vs. 48.3 ± 7.5 and 46.3 ± 7.7 years, respectively, P = 0.024). Among Ashkenazi women, the T/T genotype was less common in patients in whom CAD symptoms appeared after age 50 (6.4%) than in patients with earlier CAD symptoms (25.8%, P = 0.037) and Ashkenazi control subjects (23.3%, P = 0.045). Among women from other origins, these differences were not significant. On logistic regression analysis, the T/T genotype was associated with a nearly fourfold increase in the risk of early onset (age < 50 years) of CAD (odds ratio 3.87, 95% confidence interval 1.12–13.45, adjusted for risk factors and origin) and a trend towards an influence of ethnicity (P = 0.08). Compared to Ashkenazi women, the risk of early development of CAD associated with the T/T genotype among Oriental ones was 0.46 (95%CI[2] 0.189–1.114) and in women of other origins, 5.84 (95%CI 1.76–19.34). Each additional risk factor increased the risk of earlier onset of CAD by 42% (OR[3] 1.42, 95%CI 1.06–1.89).

Conclusions: The age at onset of CAD in Israeli women is influenced by the MTHFR genotype, ethnic origin and coronary risk factors.






[1] CAD = coronary artery disease

[2] CI = confidence interval

[3] OR = odds ratio


February 2008
January 2008
M. Blank and Y. Shoenfeld

Idiotypic analyses of anti-DNA autoantibodies were widely reported a decade ago. More than 100 studies were conducted on one of the main analyzed idiotypes, the 16/6 Id of the anti-ssDNA monoclonal antibody. In this review we summarize current knowledge on the characteristics of the 16/6 Id[1], its link to infection and its target epitopes on other molecules known so far. This includes the modulation of T and B cell responses and gene expression by the 16/6 mAb[2] in vitro and in vivo. We focus on the ability and mechanisms by which this idiotype induces experimental lupus in naïve mice, manifested by autoantibody spread, kidney and brain involvement, and leukopenia associated with enhanced sedimentation rate. We also discuss various therapeutic modalities to treat 16/6 induced lupus in mice.

 

 







[1] Id = idiotype

[2] mAb = monoclonal antibody


December 2007
O. Wand, Z. Perles, A.J.J.T. Rein, N. Algur and A. Nir

Background: Surgical repair of tetralogy of Fallot may leave the patient with pulmonary regurgitation causing eventual right ventricle dilatation and dysfunction. Predicting clinical deterioration may help to determine the best timing for intervention.

Objectives: To assess whether the clinical and humoral status of patients in the second decade after repair of ToF[1] is worse than that of patients in the first decade after repair.

Methods: Twenty-one patients with repaired ToF underwent clinical assessment, electrocardiogram, echocardiogram and measurement of plasma B-type natriuretic peptide and N-terminal pro-BNP[2] as well as the 6 minute walk distance test. Patients were divided into two groups: group A – less than 10 years after repair (n=10, age < 12 years old), and group B – more than 10 years after repair (n=11, age > 12 years old). The age at repair was similar in both groups.

Results: In all but one patient the distance in the 6 min walk test was less than the minimum for age. RV[3] end-diastolic volume and the 6 min walk test correlated with age. NT-proBNP[4] levels were significantly higher in the ToF group compared to 26 healthy controls (P < 0.0001) and were inversely correlated with RV ejection fraction. Comparison of the two groups showed no difference in RV end-diastolic volume indexed for body surface area, pulmonary regurgitation severity, right or left ventricular myocardial performance index, RV ejection fraction, QRS duration, or 6 min walk indexed to minimum for age.

Conclusions: In this group of patients with similar age at operation and pulmonary regurgitation severity, most clinical, echocardiographic and humoral parameters were not worse in the second decade after repair of ToF. These data suggest that very early pulmonary valve replacement may not be of benefit.

 






[1] ToF = tetralogy of Fallot



[2] BNP = B-type natriuretic peptide



[3] RV = right ventricle



[4] NT-proBNP = N-terminal pro-BNP



 
September 2007
Y. Shachor-Meyouhas, G. Pillar and N. Shehadeh

Background: Diabetes mellitus is associated with microvascular and macrovascular diseases, potentially manifested as endothelial dysfunction. In adults with type 2 diabetes the haptoglobin genotype 1-1 has been shown to have a protective role in inhibiting the development of complications. Although complications from type 1 diabetes are infrequent during childhood, endothelial dysfunction, which is an early marker of vascular complications, may occur.

Objectives: To evaluate endothelial function in adolescents with type 1 diabetes before the development of complications and to test for potential relationships between endothelial dysfunction and haptoglobin genotype.

Methods: The study group comprised 15 adolescents with type 1 diabetes. All underwent a general physical examination, diabetes control evaluation (including HbA1c levels), endothelial function assessment and haptoglobin genotype determination.

Results: There was a significant negative correlation between HbA1c levels and endothelial function (r = -0.48, P < 0.05), and HbA1c was significantly higher in patients with endothelial dysfunction than in those with normal endothelial function (9.9 ± 2.2 vs. 7.7 ± 1.0 mg/dl, P < 0.05). In addition, there was a tendency toward a positive correlation between high density lipoprotein and endothelial function (r = 0.4, P < 0.1). There was no correlation between the haptoglobin genotype and endothelial function.

Conclusions: These results show that even in patients without complications, uncontrolled type 1 diabetes is associated with endothelial dysfunction, which may lead to microvascular complications in the future.
 

Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel
ניתן להשתמש בחצי המקלדת בכדי לנווט בין כפתורי הרכיב
",e=e.removeChild(e.firstChild)):"string"==typeof o.is?e=l.createElement(a,{is:o.is}):(e=l.createElement(a),"select"===a&&(l=e,o.multiple?l.multiple=!0:o.size&&(l.size=o.size))):e=l.createElementNS(e,a),e[Ni]=t,e[Pi]=o,Pl(e,t,!1,!1),t.stateNode=e,l=Ae(a,o),a){case"iframe":case"object":case"embed":Te("load",e),u=o;break;case"video":case"audio":for(u=0;u<$a.length;u++)Te($a[u],e);u=o;break;case"source":Te("error",e),u=o;break;case"img":case"image":case"link":Te("error",e),Te("load",e),u=o;break;case"form":Te("reset",e),Te("submit",e),u=o;break;case"details":Te("toggle",e),u=o;break;case"input":A(e,o),u=M(e,o),Te("invalid",e),Ie(n,"onChange");break;case"option":u=B(e,o);break;case"select":e._wrapperState={wasMultiple:!!o.multiple},u=Uo({},o,{value:void 0}),Te("invalid",e),Ie(n,"onChange");break;case"textarea":V(e,o),u=H(e,o),Te("invalid",e),Ie(n,"onChange");break;default:u=o}Me(a,u);var s=u;for(i in s)if(s.hasOwnProperty(i)){var c=s[i];"style"===i?ze(e,c):"dangerouslySetInnerHTML"===i?(c=c?c.__html:void 0,null!=c&&Aa(e,c)):"children"===i?"string"==typeof c?("textarea"!==a||""!==c)&&X(e,c):"number"==typeof c&&X(e,""+c):"suppressContentEditableWarning"!==i&&"suppressHydrationWarning"!==i&&"autoFocus"!==i&&(ea.hasOwnProperty(i)?null!=c&&Ie(n,i):null!=c&&x(e,i,c,l))}switch(a){case"input":L(e),j(e,o,!1);break;case"textarea":L(e),$(e);break;case"option":null!=o.value&&e.setAttribute("value",""+P(o.value));break;case"select":e.multiple=!!o.multiple,n=o.value,null!=n?q(e,!!o.multiple,n,!1):null!=o.defaultValue&&q(e,!!o.multiple,o.defaultValue,!0);break;default:"function"==typeof u.onClick&&(e.onclick=Fe)}Ve(a,o)&&(t.effectTag|=4)}null!==t.ref&&(t.effectTag|=128)}return null;case 6:if(e&&null!=t.stateNode)Ll(e,t,e.memoizedProps,o);else{if("string"!=typeof o&&null===t.stateNode)throw Error(r(166));n=yn(yu.current),yn(bu.current),Jn(t)?(n=t.stateNode,o=t.memoizedProps,n[Ni]=t,n.nodeValue!==o&&(t.effectTag|=4)):(n=(9===n.nodeType?n:n.ownerDocument).createTextNode(o),n[Ni]=t,t.stateNode=n)}return null;case 13:return zt(vu),o=t.memoizedState,0!==(64&t.effectTag)?(t.expirationTime=n,t):(n=null!==o,o=!1,null===e?void 0!==t.memoizedProps.fallback&&Jn(t):(a=e.memoizedState,o=null!==a,n||null===a||(a=e.child.sibling,null!==a&&(i=t.firstEffect,null!==i?(t.firstEffect=a,a.nextEffect=i):(t.firstEffect=t.lastEffect=a,a.nextEffect=null),a.effectTag=8))),n&&!o&&0!==(2&t.mode)&&(null===e&&!0!==t.memoizedProps.unstable_avoidThisFallback||0!==(1&vu.current)?rs===Qu&&(rs=Yu):(rs!==Qu&&rs!==Yu||(rs=Gu),0!==us&&null!==es&&(To(es,ns),Co(es,us)))),(n||o)&&(t.effectTag|=4),null);case 4:return wn(),Ol(t),null;case 10:return Zt(t),null;case 17:return It(t.type)&&Ft(),null;case 19:if(zt(vu),o=t.memoizedState,null===o)return null;if(a=0!==(64&t.effectTag),i=o.rendering,null===i){if(a)mr(o,!1);else if(rs!==Qu||null!==e&&0!==(64&e.effectTag))for(i=t.child;null!==i;){if(e=_n(i),null!==e){for(t.effectTag|=64,mr(o,!1),a=e.updateQueue,null!==a&&(t.updateQueue=a,t.effectTag|=4),null===o.lastEffect&&(t.firstEffect=null),t.lastEffect=o.lastEffect,o=t.child;null!==o;)a=o,i=n,a.effectTag&=2,a.nextEffect=null,a.firstEffect=null,a.lastEffect=null,e=a.alternate,null===e?(a.childExpirationTime=0,a.expirationTime=i,a.child=null,a.memoizedProps=null,a.memoizedState=null,a.updateQueue=null,a.dependencies=null):(a.childExpirationTime=e.childExpirationTime,a.expirationTime=e.expirationTime,a.child=e.child,a.memoizedProps=e.memoizedProps,a.memoizedState=e.memoizedState,a.updateQueue=e.updateQueue,i=e.dependencies,a.dependencies=null===i?null:{expirationTime:i.expirationTime,firstContext:i.firstContext,responders:i.responders}),o=o.sibling;return Mt(vu,1&vu.current|2),t.child}i=i.sibling}}else{if(!a)if(e=_n(i),null!==e){if(t.effectTag|=64,a=!0,n=e.updateQueue,null!==n&&(t.updateQueue=n,t.effectTag|=4),mr(o,!0),null===o.tail&&"hidden"===o.tailMode&&!i.alternate)return t=t.lastEffect=o.lastEffect,null!==t&&(t.nextEffect=null),null}else 2*ru()-o.renderingStartTime>o.tailExpiration&&1t)&&vs.set(e,t)))}}function Ur(e,t){e.expirationTimee?n:e,2>=e&&t!==e?0:e}function qr(e){if(0!==e.lastExpiredTime)e.callbackExpirationTime=1073741823,e.callbackPriority=99,e.callbackNode=$t(Vr.bind(null,e));else{var t=Br(e),n=e.callbackNode;if(0===t)null!==n&&(e.callbackNode=null,e.callbackExpirationTime=0,e.callbackPriority=90);else{var r=Fr();if(1073741823===t?r=99:1===t||2===t?r=95:(r=10*(1073741821-t)-10*(1073741821-r),r=0>=r?99:250>=r?98:5250>=r?97:95),null!==n){var o=e.callbackPriority;if(e.callbackExpirationTime===t&&o>=r)return;n!==Yl&&Bl(n)}e.callbackExpirationTime=t,e.callbackPriority=r,t=1073741823===t?$t(Vr.bind(null,e)):Wt(r,Hr.bind(null,e),{timeout:10*(1073741821-t)-ru()}),e.callbackNode=t}}}function Hr(e,t){if(ks=0,t)return t=Fr(),No(e,t),qr(e),null;var n=Br(e);if(0!==n){if(t=e.callbackNode,(Ju&(Wu|$u))!==Hu)throw Error(r(327));if(lo(),e===es&&n===ns||Kr(e,n),null!==ts){var o=Ju;Ju|=Wu;for(var a=Yr();;)try{eo();break}catch(t){Xr(e,t)}if(Gt(),Ju=o,Bu.current=a,rs===Ku)throw t=os,Kr(e,n),To(e,n),qr(e),t;if(null===ts)switch(a=e.finishedWork=e.current.alternate,e.finishedExpirationTime=n,o=rs,es=null,o){case Qu:case Ku:throw Error(r(345));case Xu:No(e,2=n){e.lastPingedTime=n,Kr(e,n);break}}if(i=Br(e),0!==i&&i!==n)break;if(0!==o&&o!==n){e.lastPingedTime=o;break}e.timeoutHandle=Si(oo.bind(null,e),a);break}oo(e);break;case Gu:if(To(e,n),o=e.lastSuspendedTime,n===o&&(e.nextKnownPendingLevel=ro(a)),ss&&(a=e.lastPingedTime,0===a||a>=n)){e.lastPingedTime=n,Kr(e,n);break}if(a=Br(e),0!==a&&a!==n)break;if(0!==o&&o!==n){e.lastPingedTime=o;break}if(1073741823!==is?o=10*(1073741821-is)-ru():1073741823===as?o=0:(o=10*(1073741821-as)-5e3,a=ru(),n=10*(1073741821-n)-a,o=a-o,0>o&&(o=0),o=(120>o?120:480>o?480:1080>o?1080:1920>o?1920:3e3>o?3e3:4320>o?4320:1960*Uu(o/1960))-o,n=o?o=0:(a=0|l.busyDelayMs,i=ru()-(10*(1073741821-i)-(0|l.timeoutMs||5e3)),o=i<=a?0:a+o-i),10 component higher in the tree to provide a loading indicator or placeholder to display."+N(i))}rs!==Zu&&(rs=Xu),l=yr(l,i),f=a;do{switch(f.tag){case 3:u=l,f.effectTag|=4096,f.expirationTime=t;var w=Ar(f,u,t);ln(f,w); break e;case 1:u=l;var E=f.type,k=f.stateNode;if(0===(64&f.effectTag)&&("function"==typeof E.getDerivedStateFromError||null!==k&&"function"==typeof k.componentDidCatch&&(null===ms||!ms.has(k)))){f.effectTag|=4096,f.expirationTime=t;var _=Ir(f,u,t);ln(f,_);break e}}f=f.return}while(null!==f)}ts=no(ts)}catch(e){t=e;continue}break}}function Yr(){var e=Bu.current;return Bu.current=Cu,null===e?Cu:e}function Gr(e,t){eus&&(us=e)}function Jr(){for(;null!==ts;)ts=to(ts)}function eo(){for(;null!==ts&&!Gl();)ts=to(ts)}function to(e){var t=Fu(e.alternate,e,ns);return e.memoizedProps=e.pendingProps,null===t&&(t=no(e)),qu.current=null,t}function no(e){ts=e;do{var t=ts.alternate;if(e=ts.return,0===(2048&ts.effectTag)){if(t=br(t,ts,ns),1===ns||1!==ts.childExpirationTime){for(var n=0,r=ts.child;null!==r;){var o=r.expirationTime,a=r.childExpirationTime;o>n&&(n=o),a>n&&(n=a),r=r.sibling}ts.childExpirationTime=n}if(null!==t)return t;null!==e&&0===(2048&e.effectTag)&&(null===e.firstEffect&&(e.firstEffect=ts.firstEffect),null!==ts.lastEffect&&(null!==e.lastEffect&&(e.lastEffect.nextEffect=ts.firstEffect),e.lastEffect=ts.lastEffect),1e?t:e}function oo(e){var t=qt();return Vt(99,ao.bind(null,e,t)),null}function ao(e,t){do lo();while(null!==gs);if((Ju&(Wu|$u))!==Hu)throw Error(r(327));var n=e.finishedWork,o=e.finishedExpirationTime;if(null===n)return null;if(e.finishedWork=null,e.finishedExpirationTime=0,n===e.current)throw Error(r(177));e.callbackNode=null,e.callbackExpirationTime=0,e.callbackPriority=90,e.nextKnownPendingLevel=0;var a=ro(n);if(e.firstPendingTime=a,o<=e.lastSuspendedTime?e.firstSuspendedTime=e.lastSuspendedTime=e.nextKnownPendingLevel=0:o<=e.firstSuspendedTime&&(e.firstSuspendedTime=o-1),o<=e.lastPingedTime&&(e.lastPingedTime=0),o<=e.lastExpiredTime&&(e.lastExpiredTime=0),e===es&&(ts=es=null,ns=0),1u&&(c=u,u=l,l=c),c=Ue(w,l),f=Ue(w,u),c&&f&&(1!==k.rangeCount||k.anchorNode!==c.node||k.anchorOffset!==c.offset||k.focusNode!==f.node||k.focusOffset!==f.offset)&&(E=E.createRange(),E.setStart(c.node,c.offset),k.removeAllRanges(),l>u?(k.addRange(E),k.extend(f.node,f.offset)):(E.setEnd(f.node,f.offset),k.addRange(E)))))),E=[];for(k=w;k=k.parentNode;)1===k.nodeType&&E.push({element:k,left:k.scrollLeft,top:k.scrollTop});for("function"==typeof w.focus&&w.focus(),w=0;w=t&&e<=t}function To(e,t){var n=e.firstSuspendedTime,r=e.lastSuspendedTime;nt||0===n)&&(e.lastSuspendedTime=t),t<=e.lastPingedTime&&(e.lastPingedTime=0),t<=e.lastExpiredTime&&(e.lastExpiredTime=0)}function Co(e,t){t>e.firstPendingTime&&(e.firstPendingTime=t);var n=e.firstSuspendedTime;0!==n&&(t>=n?e.firstSuspendedTime=e.lastSuspendedTime=e.nextKnownPendingLevel=0:t>=e.lastSuspendedTime&&(e.lastSuspendedTime=t+1),t>e.nextKnownPendingLevel&&(e.nextKnownPendingLevel=t))}function No(e,t){var n=e.lastExpiredTime;(0===n||n>t)&&(e.lastExpiredTime=t)}function Po(e,t,n,o){var a=t.current,i=Fr(),l=su.suspense;i=jr(i,a,l);e:if(n){n=n._reactInternalFiber;t:{if(J(n)!==n||1!==n.tag)throw Error(r(170));var u=n;do{switch(u.tag){case 3:u=u.stateNode.context;break t;case 1:if(It(u.type)){u=u.stateNode.__reactInternalMemoizedMergedChildContext;break t}}u=u.return}while(null!==u);throw Error(r(171))}if(1===n.tag){var s=n.type;if(It(s)){n=Dt(n,s,u);break e}}n=u}else n=Al;return null===t.context?t.context=n:t.pendingContext=n,t=on(i,l),t.payload={element:e},o=void 0===o?null:o,null!==o&&(t.callback=o),an(a,t),Dr(a,i),i}function Oo(e){if(e=e.current,!e.child)return null;switch(e.child.tag){case 5:return e.child.stateNode;default:return e.child.stateNode}}function Ro(e,t){e=e.memoizedState,null!==e&&null!==e.dehydrated&&e.retryTime