• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Thu, 18.07.24

Search results


November 2002
Ernest Beutler, MD and Carol West

Background: Gaucher disease results from the accumulation of glucosylceramide (glucocerebroside) in tissues of affected persons. Patients sharing the same genotype present with widely varying degrees of lipid storage and of clinical manifestations.

Objectives: To determine whether variation in the glucosylceramide synthase (UDPGlucose ceramide glucosyltransferase) gene, which encodes the enzyme that regulates the synthesis of glucocerebroside, could account for the variability and clinical manifestations.

Methods: Patients homozygous for the 1226G (N370S) mutation, the most common in the Ashkenazi Jewish population, were investigated. The exons and flanking sequences of the gene were sequenced using DNA derived from five very mild Gaucher disease patients and four patients with relatively severe Gaucher disease. Results: One polymorphism was found in the coding region, but this did not change any amino acids. Seven other polymorphisms were found in introns and in the 5' untranslated region. Some of these were single nucleotide polymorphisms; others were insertions. The mutations appear to be in linkage equilibrium and none were found with a significantly higher frequency in either severe or mildly affected individuals.

Conclusions: Mutations in the glucosylceramide synthase gene do not appear to count for the variability in expression of the common Jewish Gaucher disease mutation.
 

Jorge Rouvier, MD, Claudio Gonzalez, MD, Alejandra Scazziota, PhD and Raul Altman, MD

Background: Elevated fibrinogen, considered an independent risk factor for coronary disease, stratifies an individual as high risk for coronary disease. A risk marker requires little intra-individual variability during a long period.

Objectives: To establish intra-individual variability of fibrinogen levels in patients with coronary disease.

Methods: We investigated fibrinogen levels prospectively in four blood samples drawn from 267 patients with a history of arterial disease (arterial group) and from 264 patients with cardiac valve replacements (valvular group). The samples were taken during the course of 78.7 and 78.8 days from the arterial and valvular groups respectively.

Results: Marked intra-individual dispersion with a reliability coefficient of 0.541 was found in the arterial group and 0.547 in the valvular group. The Bland-Altman test showed low probability to obtain similar results in different samples from the same individual. These results show large intra-individual variability, with similarities in the arterial as well as in the valvular group.

Conclusions: It is not possible to stratify a patient by a specific fibrinogen dosage.

Tomas Ganz, PhD, MD

Systemic infection or inflammation causes a decrease in intestinal iron absorption and impairs the release of recycled iron from macrophages. Decreased availability of iron may deny this essential element to invading pathogens and may inhibit their multiplication and other metabolic processes but also results in anemia of chronic disease. This article reviews recent discoveries that shed light on the regulation of iron metabolism during infection and iron overload, and point to the central role of a newly discovered peptide, hepcidin. Evidence to date indicates that hepcidin is a negative regulator of intestinal iron absorption, placental iron transport, and the release of iron from macrophages that recycle iron from senescent red cells. It may also be the central mediator of iron sequestration during infections and inflammatory states and the mediator of anemia of chronic disease. Rapid progress in this area is a good example of the beneficial effects of improvements in peptide analysis and chemistry, advances in genomics, and the increasing use of transgenic mice to determine the function of newly discovered genes and proteins.

October 2002
by Amir Karban, MD, Rami Eliakim, MD and Steven R. Brant, MD

The etiology of inflammatory bowel diseases, Crohn’s disease and ulcerative colitis, is uncertain. Studies of specific environmental factors and immune dysfunction have provided limited insight into disease pathogenesis. There is ample evidence that these diseases are in part the result of genetic predisposition. The early search for candidate genes focused on genes involved in the regulation of immune function.

Recent genome wide searches reported several susceptibility loci for Crohn’s disease and ulcerative colitis. The recent identification of the IBD1 gene (NOD2) with mutations that are associated with susceptibility to Crohn’s disease will have a major impact on the understanding of the genetics of this disease.
 

Marina Shargorodsky, MD and Reuven Zimlichman, MD
Aharon Klar, MD, Ariel Halamish, MD, David Shoseyov, MD, Pascal Cassinotti, PhD, Gunter Siegl, Chaim Springer, MD, Gila Shazberg, MD and Haggit Hurvitz, MD
Ashraf Hamdan, MD, Dania Hirsch, MD, Pnina Green, MD, PhD, Avivit Neumann, Tamara Drozd and Yair Molad, MD
September 2002
Ronen Durst, MD, Deborah Rund, MD, Daniel Schurr, MD, Osnat Eliav, MSc, Dina Ben-Yehuda, MD, Shoshi Shpizen, BSc, Liat Ben-Avi, BSc, Tova Schaap, MSc, Inna Pelz, BSc and Eran Leitersdorf, MD

Background: Low density lipoprotein apheresis is used as a complementary method for treating hypercholesterolemic patients who cannot reach target LDL[1]-cholesterol levels on conventional dietary and drug treatment. The DALI system (direct absorption of lipoproteins) is the only extracorporeal LDL-removing system compatible with whole blood.

Objective: To describe our one year experience using the DALI[2] system.

Methods: LDL apheresis was used in 13 patients due to inability to reach target LDL-C levels on conventional treatment. They included seven patients with familial hypercholesterolemia, three who had adverse reactions to statins, and three patients with ischemic heart disease who did not reach LDL-C target level on medical treatment.

Results: The average triglyceride, total cholesterol, high density lipoprotein-C and LDL-C levels before and after treatment in all patients were: 170 ± 113 vs. 124 ± 91, 269 ± 74 vs. 132 ± 48, 42 ± 8 vs. 37 ± 7.9, and 196 ± 77 vs. 80 ± 52 mg/dl, respectively. Comparing the results of a subgroup of seven patients who had previously been treated with plasma exchange, it is noteworthy that while the reduction in triglyceride, total cholesterol and LDL-C are comparable, the effect on HDL[3]-C concentration was less apparent: from an average of 39.7 ± 8.7 and 23 ± 5.7 mg/dl before and after plasma exchange to an average of 43.9 ± 8.1 and 38.4 ± 7 mg/dl before and after LDL apheresis, respectively. Five patients developed treatment-related adverse events: three experienced allergic reactions manifested as shortness of breath, urticaria and facial flushing; one patient developed rhabdomyolysis, an adverse reaction that was not reported previously as a result of LDL apheresis; and one patient had myopathy with back pain. All untoward effects occurred during the first few treatment sessions.

Conclusions: LDL apheresis using the DALI system is highly efficacious for the treatment of hypercholesterolemia. It is associated with a significant number of side effects occurring during the first treatment sessions. In patients not experiencing adverse effects in the early treatment period, it is well tolerated, and can provide remarkable clinical benefit even after short-term therapy.

________________


[1] LDL = low density lipoprotein

[2] DALI = direct absorption of lipoproteins

[3] HDL = high density lipoprotein

Yaron Niv, MD and Shlomo Birkenfield, MD

Background: Guidelines are important for keeping family physicians informed of the constant developments in many fields of medicine.

Objectives: To compare the knowledge of gastroenterologists and family physicians regarding the diagnosis and treatment of gastroesophageal reflux disease in order to determine the need for expert guidelines.

Methods: A 25 item questionnaire on the definition, diagnosis and treatment of GERD[1] was presented to 35 gastroenterologists and 35 family physicians. Each item was rated on a four point scale from 1 = highly recommended to 4 = not recommended. A voting system was used for each group on separate occasions. The proportions of correct answers according to the level of recommendation were compared between the groups.

Results: The groups' responses agreed on only 4 of the 25 items; differences between the remaining 21 were all statistically significant. For 14 items, 70% of the gastroenterologists chose the grade 1 recommendation, whereas more than 70% of the family physicians chose mostly grade 2.

Conclusions: The gap in knowledge on gastroesophageal reflux disease between gastroenterologists and family physicians is significant and may have a profound impact on diagnosis and treatment. Clear and accurate guidelines may improve patient evaluation in the community.






[1] GERD = gastroesophageal reflux disease


Dov Gavish, MD, Eyal Leibovitz, MD, Itzhak Elly, MD, Marina Shargorodsky, MD and Reuven Zimlichman, MD

Background: The implementation of treatment guidelines is lacking worldwide.

Objectives: To examine whether follow-up in a specialized lipid clinic improves the achievement rate of the treatment guidelines, as formulated by the National Cholesterol Education Program and the Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure.

Methods: The study group included patients who were referred to the lipid clinic because of hyperlipidemia. At each of five visits over a 12 month period, lipid levels, liver and creatine kinase levels, body mass index, and adherence to diet and medications were measured, and achievement of the NCEP[1] target level was assessed.

Results: A total of 1,133 patients (mean age 61.3 years, 60% males) were studied. Additional risk factors for atherosclerosis included hypertension (41%), type II diabetes mellitus (21%), smoking (17%), and a positive family history of coronary artery disease (32%). All patients had evidence of atherosclerotic vascular disease (coronary, cerebrovascular or peripheral vascular diseases). The low density lipoprotein target of <100 mg was present in only 22% of patients before enrollment, with improvement of up to 57% after the follow-up period. During follow-up, blood pressure control was improved (from 38% at the time of referral to 88% after 12 months, P < 0.001), as was glycemic control in diabetic patients (HgA1C improved from 8.2% to 7.1% after 12 months, P < 0.001). Improved risk factor control was due to increased compliance to medication treatment (from 66% at enrollment to more than 90% after 12 months), as well as careful attention to risk factor management that translated into a change in the treatment profile during the follow-up. There was an increase in the use of the following medications: aspirin from 68% to 96%, statins from 42% to 88%, beta blockers from 20% to 40%, and angiotensin-converting enzyme inhibitors from 28% to 42%; while calcium channel blocker use decreased from 40% to 30% in patients during follow-up.

Conclusion: Follow-up of patients in a specialized clinic enhances the achievement of LDL[2]-cholesterol treatment goals as well as other risk factor treatment goals, due to increased patient compliance and increased use of medications.

________________________________________________



[1] NCEP = National Cholesterol Education Program

[2] LDL = low density lipoprotein


Zvi Fireman, MD, Arkady Glukhovsky, PhD, Harold Jacob, MD, FACG, Alexandra Lavy, MD, Shlomo Lewkowicz, DSc and Eitan Scapa, MD
Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel