• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Fri, 22.11.24

Search results


October 2003
A. Figer, T. Friedman, A.E. Manguoglu, D. Flex, A. Vazina, I. Novikov, A. Shtrieker, A.A. Sidi, T. Tichler, E. Even Sapir, J. Baniel and E. Friedman

Background: The precise genes involved in conferring prostate cancer risk in sporadic and familial cases are not fully known.

Objectives: To evlauate the genetic profile within several candidate genes of unselected prostate cancer cases and to correlate this profile with disease parameters.

Methods: Jewish Israeli prostate cancer patients (n=224) were genotyped for polymorphisms within candidate genes: p53, ER, VDR, GSTT1, CYP1A1, GSTP1, GSTM1, EPHX and HPC2/ELAC2, followed by analysis of the genotype with relevant clinical and pathologic parameters.

Results: The EPHX gene His113 allele was detected in 21.4% (33/154) of patients in whom disease was diagnosed above 61 years, compared with 5.7% (4/70) in earlier onset disease (P < 0.001). Within the group of late-onset disease, the same allele was noted in 5.5% (2/36) with grade I tumors compared with 18% (34/188) with grade II and up (P = 0.004). All other tested polymorphisms were not associated with a distinct clinical or pathologic feature in a statistically significant manner.

Conclusions: In Israeli prostate cancer patients, the EPHX His113 allele is seemingly associated with a more advanced, late-onset disease. These preliminary data need to be confirmed by a larger and more ethnically diverse study.

February 2003
I. Bar, T. Friedman, E. Rudis, Y. Shargal, M. Friedman and A. Elami

Background: Fractures of the stemum may be associated with major injuries to thoracic organs, with serious consequences.

Objective: To assess the hospital course of patients diagnosed with isolated sternal fracture.

Methods: We reviewed 55 medical records of patients who were admitted with isolated sternal fracture to the emergency department during the period from January 1990 through August 1999.

Results: Fifty-one patients were involved in motor vehicle accidents, and the remainder sustained the injury as a result of a fall. Lateral chest X-ray upon admission was diagnostic in the majority of these patients (n=53). Electrocardiography (n=52) was abnormal in four patients – old myocardial infarction (n=1), non-specific ST-T changes (n=3). Cardiac enzymes (creatine-kinase-MB, n=42) were pathologically elevated in five patients. Echocardiography, performed in patients with ECG[1] abnormalities and/or elevated myocardial enzymes (n=7), was normal in these patients as well as in another 18 patients. There were no intensive care unit admissions or arrhythmias during the hospital stay, which ranged from 6 hours to 6 days (mean 2.3 ± 1.3 days, median 2 days).

Conclusion: Our findings support the view that patients with isolated sternal fracture, who have no abnormality in ECG and cardiac enzymes during the early hours after injury, are expected to have a benign course and can be discharged home from the emergency room within the first 24 hours.






[1] ECG = electrocardiograph


January 2003
J. Shemer, N. L. Friedman, E. Kokia

This paper describes "Health Value Added" – an innovative model that links performance measurement to strategy in health maintanance organizations. The HVA[1] model was developed by Maccabi Healthcare Services, Israel’s second largest HMO[2], with the aim of focusing all its activities on providing high quality care within budgetary and regulatory constraints. HVA draws upon theory and practice from strategic management and performance measurement in order to assesses an HMO’s ability to improve the health of its members. The model consists of four interrelated levels – mission, goals, systems, and resources – and builds on the existence of advanced computerized information systems that make comprehensive measurements available to decision makers in real time. HVA enables management to evaluate overall organizational performance as well as the performance of semi-autonomous units. In simple terms, the sophisticated use of performance measures can help healthcare organizations obtain more health for the same money.






[1] HVA = Health Value Added



[2] HMO = health maintenance organization


December 2002
Jayson Rapoport BSc MB MRCP, Alexander Kagan MD and Michael M. Friedlaender BM FRCP
October 2002
Arie Figer, MD, Yael Patael Karasik, MD, Ruth Gershoni Baruch, MD, Angela Chetrit, MSc, Moshe Z. Papa, MD, Revital Bruchim Bar Sade, MSc, Shulamith Riezel, MD and Eitan Friedman, MD, PhD

Background: Genes that confer mild or moderate susceptibility to breast cancer may be involved in the pathogenesis of sporadic breast cancer, modifying the phenotypic expression of mutant BRCA1/BRCA2 alleles. An attractive candidate is the insulin-like growth factor I, a known mitogen to mammary ductal cells in vivo and in vitro, whose serum levels were reportedly elevated in breast cancer patients.

Objective: To evaluate the contribution of the IGF-1 gene polymorphism to breast cancer risk by genotyping for a polymorphic allele size in breast cancer patients and controls.

Methods: We analyzed allele size distribution of the polymorphic CA repeat upstream of the IGF-I gene in 412 Israeli Jewish women: 268 women with breast cancer (212-sporadic and 56 carriers of either a BRCA1:or BRCA2 mutation), and 144 controls. Genotyping was accomplished by radioactive polymerase chain reaction of the relevant genomic region and size fractionation on polyacrylamide gels with subsequent auloradiography,

Results: Among women with breast cancer, with or without BRCA germline mutations, 196 and 198 basepair alleles were present in 4.7% (25/536 alleles), compared with 9% (26/288) controls (P = 0.02). This difference was more pronounced and significant in the non-Ashkenazi population. Conversely, the smaller size allele (176 bp) was present in the breast cancer group only {3/536, 0.6%).

Conclusions: The IGF-I polymorphism may serve as a marker for breast cancer risk in the general Jewish population, in particular non-Ashkenazi Jews, but extension and confirmation of these preliminary data are needed.
 

Yehuda Neumark, PhD, Yechiel Friedlander, PhD and Rachel Bar-Hamburger, PhD

Background: Various studies support the concept of an inherited vulnerability to drug dependency, while emphasizing the importance of social and environmental influences and their interactions

Objectives: To compare the characteristics of heroin-dependent Jewish men in Israel with those of the general population, focusing on the nature of family history of substance abuse.

Method: This case-control study compares 64 heroin-dependent Jewish male residents of Jerusalem with a community sample of 131 randomly selected Jerusalem residents with no drug use disorder. Univariate and mulbvariate moderns were employed to appraise the independent associations between heroin dependence and exposure variables such as family history of substance misuse and exposure to legal psychoactive substances.

Results: The case group is characterized by heavy tobacco and' alcohol involvement. Nearly 70% of the cases report an alcohol and/or drug problem in at least one first-degree relative compared with 10% of controls (odds ratio 14.5, adjusted for sociodemographic and other potential confounders). Cases with a positive family history have, on average, higher alcohol consumption levels and higher heroin-use severity scores, as compared with cases with no such history.

Conclusions: Familial aggregation of drug and alcohol problems, along with smoking at a young age, is the strongest predictor of heroin dependence in this population. Better understanding of the components underlying this familial aggregation can lead to improved prevention and treatment strategies.
 

August 2002
Alla Reitman, MD, Ilana Friedrich, MD, Ami Ben-Amotz, PhD and Yishai Levy, MD

Background: Obesity is among the well-established risk factors for cardiovascular morbidity and mortality. However, the exact mechanisms are not well understood. Low concentrations of vitamins (fat soluble antioxidants and B vitamins) are linked to accelerated atherosclerosis through increased oxidative stress and homocysteine.

Objective: To compare plasma antioxidant vitamins (carotenoids and vitamin E), B vitamins (folic acid and B12) and homocysteine – all linked to increased cardiovascular morbidity – between patients with severe obesity and lean control subjects.

Methods: We investigated plasma carotenoids, vitamin E, folic acid, B12, and homocysteine in 25 obese patients and their age-matched controls (body mass index 38 ± 3 vs. 21 ± 2 kg/m2), respectively), related to BMI[1] and plasma insulin.

Results: Patients with obesity had normal B vitamins and a non-significant decrease in plasma homocysteine as compared to controls (9.4 ± 2.6 vs. 11.4 ± 4.8 mmol/L, P = 0.07). There was a significant decrease in both plasma carotenoids and vitamin E (0.69 ± 0.32 vs. 1.25 ± 0.72 and 24 ± 10 vs. 33 ± 14 mg/ml, respectively; P < 0.01). Both vitamins were inversely related to BMI and plasma insulin, which was significantly increased in patients with obesity (22 ± 21 vs. 6 ± 2 mU/ml, P < 0.01).

Conclusions: Obese patients with BMI above 35 kg/m2 show low plasma antioxidants (carotenoids and vitamin E). This may result in increased oxidative stress and consequently enhanced atherosclerosis in these patients.






[1] BMI = body mass index


May 2002
Adi Friedman, MD, Yizhar Floman, MD, Shabtai Sabatto, MD, Ori Safran, MD and Rami Mosheiff, MD

Background: As air travel increases and the number of commercial and non-commercial flights rises so does the number of aircraft accidents. The improved safety standards of the aviation industry result in a growing number of survivors of aircraft crashes, but there are no management guidelines for the treatment of aircraft crash survivors.

Objectives: To present our experience in treating five survivors of a light aircraft crash that occurred in August 1995 near Jerusalem.

Results: All five survivors sustained vertebral column injuries, which was the only injury in most of the survivors. We discuss the mechanism of injury.

Conclusions: Investigation of injuries’ pattern in survivors of aircraft crash is important for establishing management protocols in trauma centers.
 

Michael Eckstein, MSc, Iris Vered, MD, Sophia Ish-Shalom, MD, Anat Ben Shlomo, MD, Avraham Shtriker, MD, Nira Koren-Morag, PhD and Eitan Friedman, MD, PhD

Background: Genetic factors have been shown to play a major role in the development of peak bone mass, with hereditability accounting for about 50-85% of the variance in bone mass. Numerous candidate genes were proposed to be involved in osteoporosis, but the precise genes and their relative contribution remain unknown.

Objectives: To gain insight into the genetic basis of idiopathic low bone mineral density in Israeli patients by analyzing the impact of two candidate genes: polymorphism of the vitamin D receptor gene and polymorphism A986s in the calcium-sensing receptor gene.

Methods: We analyzed 86 Jewish Israeli patients with LBMD[1]: 38 premenopausal women and 48 men, and compared the allelic pattern distribution with that of the general population (126 men and 112 women). Genotyping of the VDR[2] gene was performed in three polymorphic sites using restriction enzymes, and allelic analysis of A986s polymorphism in the CaSR[3] gene was performed using the denaturing gradient gel electrophoresis technique.  

Reaults: In LBMD women the distributions of VDR alleres in Apal polymorphism were AA=7/28, Aa=16/28 and aa=5/28; in TaqI polymorphism TT=10/31, Tt=16/31 and tt=5/31; and in BsmI polymorphism BB=7/32, Bb=14/32 and 11/32. In LBMD men the distributions were AA=17/39, Aa=21/39 and aa=1/39; in TaqI polymorphism TT=12/42, Tt=23/42 and tt=7/42; and in BsmI polymorphism BB=12/41 Bb=18/41 and bb=11/41. The distributions of all these polymorphisms in the control groups were not significantly different. Adjusting for the independent age and gender parameters confirmed that these three polymorphisms of the VDR gene did not have a significant effect on bone mineral density. Thirty percent (24/79) of LBMD patients of either sex displayed heterozygosity of the CaSR A986s polymorphism, compared with 40 of 203 controls (19.7%) (P=0.059). Adjusting for age and gender in these patients revealed a significant difference in the femoral neck BMD[4] between homozygotes and heterozygotes (P=0.002). The age at menarche of the LBMD women was found to predict 61% of the variance of femoral neck BMD.

Conclusions: In Israeli Jewish men and premenopausal women VDR gene alleles do not seem to be associated with lower lumbar spine or femoral neck BMD. A trend towards heterozygosity for a CaSR polymorphism missense mutation was noted in the LBMD patients. Age at menarche in the LBMD women was found to be an important predictor of BMD. A significant difference was found between LBMD women and healthy control women towards heterozygosity for a CaSR polymorphism, as well between homozygotes and heterozygotes for a CaSR polymorphism in BMD. The significance of these findings and their applicability to a larger population awaits further studies.

_____________________________________


[1] LBMD = low bone mineral density


[2] VDR = vitamin D receptor


[3] CaSR = calcium-sensing receptor


[4] BMD = bone mineral density




March 2002
Eliyahu H. Mizrahi, MD, Donald W. Jacobsen, PhD and Robert P. Friedland, MD
February 2002
Leah Peleg, PhD, Rachel Pesso, PhD, Boleslaw Goldman, MD, Keren Dotan, Merav Omer, Eitan Friedman, MD, PhD, Michal Berkenstadt, PhD, Haike Reznik-Wolf, PhD and Gad Barkai, MD

Background: The Bloom syndrome gene, BLM, was mapped to 15q26.1 and its product was found to encode a RecQ DNA helicase. The Fanconi anemia complementation group C gene was mapped to chromosome 9q22.3, but its product function is not sufficiently clear. Both are recessive disorders associated with an elevated predisposition to cancer due to genomic instability. A single predominant mutation of each disorder was reported in Ashkenazi Jews: 2281delATCTGAinsTAGATTC for Bloom syndrome (BLM-ASH) and IVS4+4A®T for Fanconi anemia complementation group C.

Objectives: To provide additional verification of the mutation rate of BLM and FACC[1] in unselected Ashkenazi and non-Ashkenazi populations analyzed at the Sheba Medical Center, and to trace the origin of each mutation.

Methods: We used polymerase chain reaction to identify mutations of the relevant genomic fragments, restriction analysis and gel electrophoresis. We then applied the ProntoTM kit to verify the results in 244 samples and there was an excellent match.

Results: A heterozygote frequency of 1:111 for BLM-ASH and 1:92 for FACC was detected in more than 4,000 participants, none of whom reported a family history of the disorders. The ProntoTM kit confirmed all heterozygotes. Neither of the mutations was detected in 950 anonymous non-Ashkenazi Jews. The distribution pattern of parental origin differed significantly between the two carrier groups, as well as between each one and the general population.

Conclusions: These findings as well as the absence of the mutations in non-Ashkenazi Jews suggest that: a) the mutations originated in the Israelite population that was exiled from Palestine by the Roman Empire in 70 AD and settled in Europe (Ashkenazi), in contrast to those who remained; and b) the difference in origin distribution of the BS[2] and FACC mutations can be explained by either a secondary migration of a subgroup with a subsequent genetic drift, or a separate geographic region of introduction for each mutation.

______________________________________

[1] FACC = Fanconi anemia complementation group C


[2] BS = Bloom syndrome

January 2002
Philip J. Hashkes, MD, MSc, Orit Friedland, MD and Yosef Uziel, MD, MSc
Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel