Ernest Beutler, MD and Carol West
Background: Gaucher disease results from the accumulation of glucosylceramide (glucocerebroside) in tissues of affected persons. Patients sharing the same genotype present with widely varying degrees of lipid storage and of clinical manifestations.
Objectives: To determine whether variation in the glucosylceramide synthase (UDPGlucose ceramide glucosyltransferase) gene, which encodes the enzyme that regulates the synthesis of glucocerebroside, could account for the variability and clinical manifestations.
Methods: Patients homozygous for the 1226G (N370S) mutation, the most common in the Ashkenazi Jewish population, were investigated. The exons and flanking sequences of the gene were sequenced using DNA derived from five very mild Gaucher disease patients and four patients with relatively severe Gaucher disease. Results: One polymorphism was found in the coding region, but this did not change any amino acids. Seven other polymorphisms were found in introns and in the 5' untranslated region. Some of these were single nucleotide polymorphisms; others were insertions. The mutations appear to be in linkage equilibrium and none were found with a significantly higher frequency in either severe or mildly affected individuals.
Conclusions: Mutations in the glucosylceramide synthase gene do not appear to count for the variability in expression of the common Jewish Gaucher disease mutation.
Jane Zhao, MD, Hsiao-Nan Hao, MD and William D. Lyman, PhD
Background: Experimental and clinical protocols are being developed for the cryopreservation of human hematopoietic progenitor cells. However, the effect of these procedures on the potential for HPC to repopulate bone marrow is unknown.
Objectives: To examine the effect of cryopreservation on the ability of fetal human liver HPC, which include CD34+ cells and long-term culture-initiating cells, to repopulate immunodeficient non-obese diabetic/severe combined immunodeficiency mouse bone marrow.
Methods: Groups of sublethally irradiated NOD/SCID mice were injected intravenously with cryopreserved or freshly isolated fetal human liver HPC.
Results: Seven weeks after transplantation, flow cytometric analysis of bone marrow samples showed that mice that received the transplanted cells (either cryopreserved or freshly isolated) demonstrated both lymphoid and myeloid differentiation as well as the retention of a significant fraction of CD34+ cells. Conclusions: Cryopreserved fetal human liver-derived HPC appear to be capable of initiating human cell engraftment in NOD/SCID mouse bone marrow and open the possibility of using cryopreserved fetal human liver HPC for gene manipulation, gene transfusion therapy, and transplantation purposes.
_______________________________