• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Wed, 16.04.25

Search results


August 2019
Yulia Treister-Goltzman MD and Roni Peleg MD

The Bedouins living in southern Israel are a Muslim-Arab population that is transitioning from a nomadic lifestyle to life in permanent settlements. The population has unique characteristics that could affect hemoglobin A1c (HbA1c) measurements. The objective of this study was to describe the socio-demographic and unique morbidity characteristics of this community and their effect on HbA1c measurements. Consanguinity, especially among cousins in the Bedouin population, results in a high prevalence of autosomal recessive genetic diseases such as thalassemia (underestimate of HbA1c), hemoglobinopathies (underestimate and overestimate), Gilbert’s disease, and glucose-6-phosphate dehydrogenase deficiency, an X-linked disorder, which can cause hyperbilirubinemia with an overestimate of HbA1c. Furthermore, nutritional deficiencies, autosomal recessive diseases, high birth rates, parasitic infections, and poverty can all cause high rates of anemia (iron and vitamin B12 deficiencies) that can raise HbA1c levels. Congenital dyserythropoietic anemia is found among Bedouin tribes in the Negev region and can lead to an underestimation of HbA1c levels. Pregnancy can also affect HbA1c levels. Medical teams working in the Bedouin community and in other Muslim populations with similar morbidity characteristics throughout the world should identify patients with medical conditions that can affect HbA1c measurements and be aware of possible measurement alternatives such as fructosamine and glycated albumin.

November 2018
Shlomit Koren MD, Michael Yoshpa MD, Ronit Koren MD, Dror Cantrell MD and Micha J. Rapoport MD

Background: Basal-bolus (BB) insulin treatment is increasingly used in poorly controlled diabetes patients during hospitalization and is commonly recommended at discharge; however, the extent of adherence with this recommendation is unknown.

Objectives: To determine short-term adherence of type 2 diabetes mellitus (T2DM) patients discharged from internal medicine wards with recommendation for BB insulin treatment.

Methods: Prescription (primary physician adherence) and purchase (patient adherence) of long-acting and short-acting insulins during the first month following discharge from internal medicine wards was determined in 153 T2DM patients. Adherence was defined as full if prescription/purchase of both basal (long-acting) and bolus (short-acting) insulin was completed, and as partial if only one kind of insulin (basal or bolus) was prescribed/purchased. Association between demographic and clinical parameters and adherence was determined.

Results: Full adherence with discharge instructions was higher for primary physicians than for patients )79.1% vs. 69.3%, respectively, P = 0.0182). Pre-hospitalization hemoglobin A1C was significantly associated with adherence by both patients and primary physicians (full-adherence group 9.04% ± 2.04%; no-adherence group 7.51% ± 1.35%, P = 0.002). Age was negatively associated with adherence of both primary physicians and patients; however, this association did not reach statistical significance. Patients with certain background diseases such as atrial fibrillation, coronary heart disease, and chronic heart failure had significantly worse adherence (P < 0.05). When the sole cause of admission was diabetes, full adherence (100%) of both primary physicians and patients was found.

Conclusions: Short-term adherence with discharge recommendation for BB insulin treatment is associated with pre-hospitalization patient characteristics.

August 2018
Avi Porath MD MPH, Jonathan Eli Arbelle MD MHA, Naama Fund, Asaf Cohen and Morris Mosseri MD FESC

Background: The salutary effects of statin therapy in patients with cardiovascular disease (CVD) are well established. Although generally considered safe, statin therapy has been reported to contribute to induction of diabetes mellitus (DM).

Objectives: To assess the risk-benefit of statin therapy, prescribed for the prevention of CVD, in the development of DM.

Methods: In a population-based real-life study, the incidence of DM and CVD were assessed retrospectively among 265,414 subjects aged 40–70 years, 17.9% of whom were treated with statins. Outcomes were evaluated according to retrospectively determined baseline 10 year cardiovascular (CV) mortality risks as defined by the European Systematic COronary Risk Evaluation, statin dose-intensity regimen, and level of drug adherence.

Results: From 2010 to 2014, 5157 (1.9%) new cases of CVD and 11,637 (4.4%) of DM were observed. Low-intensity statin therapy with over 50% adherence was associated with increased DM incidence in patients at low or intermediate baseline CV risk, but not in patients at high CV risk. In patients at low CV risk, no CV protective benefit was obtained. The number needed to harm (NNH; incident DM) for low-intensity dose regimens with above 50% adherence was 40. In patients at intermediate and high CV risk, the number needed to treat was 125 and 29; NNH was 50 and 200, respectively.

Conclusions: Prescribing low-dose statins for primary prevention of CVD is beneficial in patients at high risk and may be detrimental in patients at low CV risk. In patients with intermediate CV risk, our data support current recommendations of individualizing treatment decisions.

Amichai Perlman MD, Samuel N Heyman MD, Joshua Stokar MD, David Darmon MD, Mordechai Muszkat MD and Auryan Szalat MD

Background: Sodium-glucose cotransporter 2 inhibitors (SGLT2i) (such as canagliflozin, empagliflozin, and dapagliflozin) are widely used to treat patients with type 2 diabetes mellitus (T2DM) to improve glycemic, cardiovascular and renal outcomes. However, based on post-marketing data, a warning label was added regarding possible occurrence of acute kidney injury (AKI).

Objectives: To describe the clinical presentation of T2DM patients treated with SGLT2i who were evaluated for AKI at our institution and to discuss the potential pathophysiologic mechanisms.

Methods: A retrospective study of a computerized database was conducted of patients with T2DM who were hospitalized or evaluated for AKI while receiving SGLT2i, including descriptions of clinical and laboratory characteristics, at our institution.

Results: We identified seven patients in whom AKI occurred 7–365 days after initiation of SGLT2i. In all cases, renin-angiotensin-aldosterone system blockers had also been prescribed. In five patients, another concomitant nephrotoxic agent (injection of contrast-product, use of nonsteroidal anti-inflammatory drugs or cox-2 inhibitors) or occurrence of an acute medical event potentially associated with AKI (diarrhea, sepsis) was identified. In two patients, only the initiation of SGLT2i was evident. The mechanisms by which AKI occurs under SGLT2i are discussed with regard to the associated potential triggers: altered trans-glomerular filtration or, alternatively, kidney medullary hypoxia.

Conclusions: SGLT2i are usually safe and provide multiple benefits for patients with T2DM. However, during particular medical circumstances, and in association with usual co-medications, particularly if baseline glomerular filtration rate is decreased, patients treated with SGLT2i may be at risk of AKI, thus warranting caution when prescribed.

June 2018
Nadav Shinhar, Dana Marcoviciu and Dror Dicker

Background: Type 2 diabetes mellitus is a multifactorial disease in which genetic susceptibility and environmental factors induce pancreatic β-cell dysfunction and insulin resistance. Additional factors such as hyperglycemia and hyperlipidemia have roles in β-cell dysfunction and disease progression. The phenomenon of lipid-induced pancreatic β-dysfunction, designated as lipotoxicity, has been observed in several in vitro and in vivo experiments; however, there is still no solid evidence for the occurrence of this event in humans. The toxic effect of high lipid levels on β-cell function consists of impaired insulin gene expression, apoptosis, and reduced glucose-stimulated insulin secretion.

Objectives: To demonstrate the importance of treating hypertriglyceridemia in reducing glucose intolerance and the need for insulin therapy in hospitalized diabetic patients.

Methods: We evaluated five clinical case reports and conducted a detailed literature review via the PubMed search engine.

Results: Reduction in elevated blood triglyceride and glucose levels in hospitalized diabetic patients resulted in a rapid decline in glucose levels and in the need for insulin therapy.

Conclusions: A decrease in high triglyceride levels in “lipotoxic” diabetic patients may improve insulin intolerance and glucose homeostasis and reduce the need for insulin therapy.

February 2018
Ori Eyal MD, Asaf Oren MD, Dganit Almasi-Wolker MD, Yardena Tenenbaum-Rakover MD, Marianna Rachmiel MD and Naomi Weintrob MD

Background: Diabetic ketoacidosis (DKA) as the first presentation of type 1 diabetes mellitus (T1DM) is a serious complication that is preventable.

Objectives: To identify risk factors for DKA at presentation of T1DM to delineate high-risk Israeli populations that could benefit from preventative measures.

Methods: Data for this multicenter retrospective study were collected from the medical files of three pediatric diabetes centers representing three districts in Israel. Inclusion criteria were diagnosis of T1DM, age at diagnosis ≤ 17 years, permanent residency in Israel, and documentation of the presence or absence of DKA at presentation.

Results: The study population included 607 patients of whom 438 met the inclusion criteria. The mean age at diagnosis was 9.1 ± 4.5 years. DKA was present at diagnosis in 156/438 patients (35.6%). The incidence of DKA was different among the three diabetes centers (P = 0.04). The DKA group was significantly younger than the non-DKA group (8.4 ± 4.5 vs. 9.5 ± 4.4, respectively, P = 0.008). DKA was significantly associated with maternal origin (Ashkenazi Jewish origin [lower] vs. non-Ashkenazi, P = 0.04) and with paternal education level (academic [lower] vs. non-academic education, P = 0.04). Stepwise logistic regression showed that maternal Ashkenazi Jewish origin has a protective effect on DKA (odds ratio [OR] 0.4, 95% confidence interval [95%CI] 0.21–0.74, P = 0.004) and that younger age is an independent risk factor (OR 1.06, 95%CI 1.01–1.1, P = 0.02).

Conclusions: A diabetes educational program targeting high-risk population groups may reduce the prevalence of DKA nationwide.

May 2017
Shlomit Koren MD, Shani Zilberman-Itskovich MD, Ronit Koren MD, Keren Doenyas-Barak MD and Ahuva Golik MD

Background: Concerns about metformin-associated lactic acidosis (MALA) prohibit the use of metformin in a large subset of diabetic patients, mostly in patients with chronic kidney disease. Increasing evidence suggests that the current safety regulations may be overly restrictive.

Objectives: To examine the association between chronic metformin treatment and lactate level in acute illness on the first day of admission to an internal medicine ward.

Methods: We compared diabetic and non-diabetic hospitalized patients treated or not treated with metformin in different sets of kidney function.

Results: A total of 140 patients participated in the study, 54 diabetic patients on chronic metformin treatment, 33 diabetic patients without metformin and 53 patients with no diabetes. Most participants were admitted for conditions that prohibit metformin use, such as heart failure, hypoxia and sepsis. Average lactate level was significantly higher in the diabetes + metformin group compared to the diabetes non-metformin group. Metformin treatment was not associated with higher than normal lactate level (hyperlactatemia) or low pH. No patient was hospitalized for lactic acidosis as the main diagnosis.

Conclusions: Chronic metformin treatment mildly increases lactate level, but does not induce hyperlactatemia or lactic acidosis in acute illness on the first day of admission to an internal medicine ward. These data support the expansion of metformin use.

July 2016
Avivit Brener MD, Eran Mel MD, Shlomit Shalitin MD, Liora Lazar MD, Liat de Vries MD, Ariel Tenenbaum MD, Tal Oron MD, Alon Farfel MD, Moshe Phillip MD and Yael Lebenthal MD

Background: Patients with type 1 diabetes (T1D) are exempt from conscript military service, but some volunteer for national service. 

Objectives: To evaluate the effect of national service (military or civil) on metabolic control and incidence of acute diabetes complications in young adults with T1D. 

Methods: Clinical and laboratory data of 145 T1D patients were retrieved from medical records. The cohort comprised 76 patients volunteering for national service and 69 non-volunteers. Outcome measures were HbA1c, body mass index-standard deviation scores (BMI-SDS), insulin dosage, and occurrence of severe hypoglycemia or diabetic ketoacidosis (DKA). 

Results: Metabolic control was similar in volunteers and non-volunteers: mean HbA1c at various time points was: 7.83 ± 1.52% vs. 8.07% ± 1.63 one year before enlistment age, 7.89 ± 1.36% vs. 7.93 ± 1.42% at enlistment age, 7.81 ± 1.28% vs. 8.00 ± 1.22% one year thereafter, 7.68 ± 0.88% vs. 7.82 ± 1.33% two years thereafter, and 7.62 ± 0.80% vs. 7.79 ± 1.19% three years thereafter. There were no significant changes in HbA1c from baseline throughout follow-up. BMI and insulin requirements were similar and remained unchanged in volunteers and controls: mean BMI-SDS one year before enlistment age was 0.23 ± 0.83 vs. 0.29 ± 0.95, at enlistment age 0.19 ± 0.87 vs. 0.25 ± 0.98, one year thereafter 0.25 ± 0.82 vs. 0.20 ± 0.96, two years thereafter 0.10 ± 0.86 vs. 0.15 ± 0.94, and three years thereafter 0.20 ± 0.87 vs. 0.16 ± 0.96. Mean insulin dose in U/kg/day one year before enlistment age was 0.90 ± 0.23 vs. 0.90 ± 0.37, at enlistment age 0.90 ± 0.28 vs. 0.93 ± 0.33, one year thereafter 0.86 ± 0.24 vs. 0.95 ± 0.33, two years thereafter 0.86 ± 0.21 vs. 0.86 ± 0.29, and three years thereafter 0.87 ± 0.23 vs. 0.86 ± 0.28. There were no episodes of severe hypoglycemia or DKA in either group. 

Conclusions: Our data indicate that during voluntary national service young adults with T1D maintain metabolic control similar to that of non-volunteers. 

 

Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel
ניתן להשתמש בחצי המקלדת בכדי לנווט בין כפתורי הרכיב
",e=e.removeChild(e.firstChild)):"string"==typeof o.is?e=l.createElement(a,{is:o.is}):(e=l.createElement(a),"select"===a&&(l=e,o.multiple?l.multiple=!0:o.size&&(l.size=o.size))):e=l.createElementNS(e,a),e[Ni]=t,e[Pi]=o,Pl(e,t,!1,!1),t.stateNode=e,l=Ae(a,o),a){case"iframe":case"object":case"embed":Te("load",e),u=o;break;case"video":case"audio":for(u=0;u<$a.length;u++)Te($a[u],e);u=o;break;case"source":Te("error",e),u=o;break;case"img":case"image":case"link":Te("error",e),Te("load",e),u=o;break;case"form":Te("reset",e),Te("submit",e),u=o;break;case"details":Te("toggle",e),u=o;break;case"input":A(e,o),u=M(e,o),Te("invalid",e),Ie(n,"onChange");break;case"option":u=B(e,o);break;case"select":e._wrapperState={wasMultiple:!!o.multiple},u=Uo({},o,{value:void 0}),Te("invalid",e),Ie(n,"onChange");break;case"textarea":V(e,o),u=H(e,o),Te("invalid",e),Ie(n,"onChange");break;default:u=o}Me(a,u);var s=u;for(i in s)if(s.hasOwnProperty(i)){var c=s[i];"style"===i?ze(e,c):"dangerouslySetInnerHTML"===i?(c=c?c.__html:void 0,null!=c&&Aa(e,c)):"children"===i?"string"==typeof c?("textarea"!==a||""!==c)&&X(e,c):"number"==typeof c&&X(e,""+c):"suppressContentEditableWarning"!==i&&"suppressHydrationWarning"!==i&&"autoFocus"!==i&&(ea.hasOwnProperty(i)?null!=c&&Ie(n,i):null!=c&&x(e,i,c,l))}switch(a){case"input":L(e),j(e,o,!1);break;case"textarea":L(e),$(e);break;case"option":null!=o.value&&e.setAttribute("value",""+P(o.value));break;case"select":e.multiple=!!o.multiple,n=o.value,null!=n?q(e,!!o.multiple,n,!1):null!=o.defaultValue&&q(e,!!o.multiple,o.defaultValue,!0);break;default:"function"==typeof u.onClick&&(e.onclick=Fe)}Ve(a,o)&&(t.effectTag|=4)}null!==t.ref&&(t.effectTag|=128)}return null;case 6:if(e&&null!=t.stateNode)Ll(e,t,e.memoizedProps,o);else{if("string"!=typeof o&&null===t.stateNode)throw Error(r(166));n=yn(yu.current),yn(bu.current),Jn(t)?(n=t.stateNode,o=t.memoizedProps,n[Ni]=t,n.nodeValue!==o&&(t.effectTag|=4)):(n=(9===n.nodeType?n:n.ownerDocument).createTextNode(o),n[Ni]=t,t.stateNode=n)}return null;case 13:return zt(vu),o=t.memoizedState,0!==(64&t.effectTag)?(t.expirationTime=n,t):(n=null!==o,o=!1,null===e?void 0!==t.memoizedProps.fallback&&Jn(t):(a=e.memoizedState,o=null!==a,n||null===a||(a=e.child.sibling,null!==a&&(i=t.firstEffect,null!==i?(t.firstEffect=a,a.nextEffect=i):(t.firstEffect=t.lastEffect=a,a.nextEffect=null),a.effectTag=8))),n&&!o&&0!==(2&t.mode)&&(null===e&&!0!==t.memoizedProps.unstable_avoidThisFallback||0!==(1&vu.current)?rs===Qu&&(rs=Yu):(rs!==Qu&&rs!==Yu||(rs=Gu),0!==us&&null!==es&&(To(es,ns),Co(es,us)))),(n||o)&&(t.effectTag|=4),null);case 4:return wn(),Ol(t),null;case 10:return Zt(t),null;case 17:return It(t.type)&&Ft(),null;case 19:if(zt(vu),o=t.memoizedState,null===o)return null;if(a=0!==(64&t.effectTag),i=o.rendering,null===i){if(a)mr(o,!1);else if(rs!==Qu||null!==e&&0!==(64&e.effectTag))for(i=t.child;null!==i;){if(e=_n(i),null!==e){for(t.effectTag|=64,mr(o,!1),a=e.updateQueue,null!==a&&(t.updateQueue=a,t.effectTag|=4),null===o.lastEffect&&(t.firstEffect=null),t.lastEffect=o.lastEffect,o=t.child;null!==o;)a=o,i=n,a.effectTag&=2,a.nextEffect=null,a.firstEffect=null,a.lastEffect=null,e=a.alternate,null===e?(a.childExpirationTime=0,a.expirationTime=i,a.child=null,a.memoizedProps=null,a.memoizedState=null,a.updateQueue=null,a.dependencies=null):(a.childExpirationTime=e.childExpirationTime,a.expirationTime=e.expirationTime,a.child=e.child,a.memoizedProps=e.memoizedProps,a.memoizedState=e.memoizedState,a.updateQueue=e.updateQueue,i=e.dependencies,a.dependencies=null===i?null:{expirationTime:i.expirationTime,firstContext:i.firstContext,responders:i.responders}),o=o.sibling;return Mt(vu,1&vu.current|2),t.child}i=i.sibling}}else{if(!a)if(e=_n(i),null!==e){if(t.effectTag|=64,a=!0,n=e.updateQueue,null!==n&&(t.updateQueue=n,t.effectTag|=4),mr(o,!0),null===o.tail&&"hidden"===o.tailMode&&!i.alternate)return t=t.lastEffect=o.lastEffect,null!==t&&(t.nextEffect=null),null}else 2*ru()-o.renderingStartTime>o.tailExpiration&&1t)&&vs.set(e,t)))}}function Ur(e,t){e.expirationTimee?n:e,2>=e&&t!==e?0:e}function qr(e){if(0!==e.lastExpiredTime)e.callbackExpirationTime=1073741823,e.callbackPriority=99,e.callbackNode=$t(Vr.bind(null,e));else{var t=Br(e),n=e.callbackNode;if(0===t)null!==n&&(e.callbackNode=null,e.callbackExpirationTime=0,e.callbackPriority=90);else{var r=Fr();if(1073741823===t?r=99:1===t||2===t?r=95:(r=10*(1073741821-t)-10*(1073741821-r),r=0>=r?99:250>=r?98:5250>=r?97:95),null!==n){var o=e.callbackPriority;if(e.callbackExpirationTime===t&&o>=r)return;n!==Yl&&Bl(n)}e.callbackExpirationTime=t,e.callbackPriority=r,t=1073741823===t?$t(Vr.bind(null,e)):Wt(r,Hr.bind(null,e),{timeout:10*(1073741821-t)-ru()}),e.callbackNode=t}}}function Hr(e,t){if(ks=0,t)return t=Fr(),No(e,t),qr(e),null;var n=Br(e);if(0!==n){if(t=e.callbackNode,(Ju&(Wu|$u))!==Hu)throw Error(r(327));if(lo(),e===es&&n===ns||Kr(e,n),null!==ts){var o=Ju;Ju|=Wu;for(var a=Yr();;)try{eo();break}catch(t){Xr(e,t)}if(Gt(),Ju=o,Bu.current=a,rs===Ku)throw t=os,Kr(e,n),To(e,n),qr(e),t;if(null===ts)switch(a=e.finishedWork=e.current.alternate,e.finishedExpirationTime=n,o=rs,es=null,o){case Qu:case Ku:throw Error(r(345));case Xu:No(e,2=n){e.lastPingedTime=n,Kr(e,n);break}}if(i=Br(e),0!==i&&i!==n)break;if(0!==o&&o!==n){e.lastPingedTime=o;break}e.timeoutHandle=Si(oo.bind(null,e),a);break}oo(e);break;case Gu:if(To(e,n),o=e.lastSuspendedTime,n===o&&(e.nextKnownPendingLevel=ro(a)),ss&&(a=e.lastPingedTime,0===a||a>=n)){e.lastPingedTime=n,Kr(e,n);break}if(a=Br(e),0!==a&&a!==n)break;if(0!==o&&o!==n){e.lastPingedTime=o;break}if(1073741823!==is?o=10*(1073741821-is)-ru():1073741823===as?o=0:(o=10*(1073741821-as)-5e3,a=ru(),n=10*(1073741821-n)-a,o=a-o,0>o&&(o=0),o=(120>o?120:480>o?480:1080>o?1080:1920>o?1920:3e3>o?3e3:4320>o?4320:1960*Uu(o/1960))-o,n=o?o=0:(a=0|l.busyDelayMs,i=ru()-(10*(1073741821-i)-(0|l.timeoutMs||5e3)),o=i<=a?0:a+o-i),10 component higher in the tree to provide a loading indicator or placeholder to display."+N(i))}rs!==Zu&&(rs=Xu),l=yr(l,i),f=a;do{switch(f.tag){case 3:u=l,f.effectTag|=4096,f.expirationTime=t;var w=Ar(f,u,t);ln(f,w); break e;case 1:u=l;var E=f.type,k=f.stateNode;if(0===(64&f.effectTag)&&("function"==typeof E.getDerivedStateFromError||null!==k&&"function"==typeof k.componentDidCatch&&(null===ms||!ms.has(k)))){f.effectTag|=4096,f.expirationTime=t;var _=Ir(f,u,t);ln(f,_);break e}}f=f.return}while(null!==f)}ts=no(ts)}catch(e){t=e;continue}break}}function Yr(){var e=Bu.current;return Bu.current=Cu,null===e?Cu:e}function Gr(e,t){eus&&(us=e)}function Jr(){for(;null!==ts;)ts=to(ts)}function eo(){for(;null!==ts&&!Gl();)ts=to(ts)}function to(e){var t=Fu(e.alternate,e,ns);return e.memoizedProps=e.pendingProps,null===t&&(t=no(e)),qu.current=null,t}function no(e){ts=e;do{var t=ts.alternate;if(e=ts.return,0===(2048&ts.effectTag)){if(t=br(t,ts,ns),1===ns||1!==ts.childExpirationTime){for(var n=0,r=ts.child;null!==r;){var o=r.expirationTime,a=r.childExpirationTime;o>n&&(n=o),a>n&&(n=a),r=r.sibling}ts.childExpirationTime=n}if(null!==t)return t;null!==e&&0===(2048&e.effectTag)&&(null===e.firstEffect&&(e.firstEffect=ts.firstEffect),null!==ts.lastEffect&&(null!==e.lastEffect&&(e.lastEffect.nextEffect=ts.firstEffect),e.lastEffect=ts.lastEffect),1e?t:e}function oo(e){var t=qt();return Vt(99,ao.bind(null,e,t)),null}function ao(e,t){do lo();while(null!==gs);if((Ju&(Wu|$u))!==Hu)throw Error(r(327));var n=e.finishedWork,o=e.finishedExpirationTime;if(null===n)return null;if(e.finishedWork=null,e.finishedExpirationTime=0,n===e.current)throw Error(r(177));e.callbackNode=null,e.callbackExpirationTime=0,e.callbackPriority=90,e.nextKnownPendingLevel=0;var a=ro(n);if(e.firstPendingTime=a,o<=e.lastSuspendedTime?e.firstSuspendedTime=e.lastSuspendedTime=e.nextKnownPendingLevel=0:o<=e.firstSuspendedTime&&(e.firstSuspendedTime=o-1),o<=e.lastPingedTime&&(e.lastPingedTime=0),o<=e.lastExpiredTime&&(e.lastExpiredTime=0),e===es&&(ts=es=null,ns=0),1u&&(c=u,u=l,l=c),c=Ue(w,l),f=Ue(w,u),c&&f&&(1!==k.rangeCount||k.anchorNode!==c.node||k.anchorOffset!==c.offset||k.focusNode!==f.node||k.focusOffset!==f.offset)&&(E=E.createRange(),E.setStart(c.node,c.offset),k.removeAllRanges(),l>u?(k.addRange(E),k.extend(f.node,f.offset)):(E.setEnd(f.node,f.offset),k.addRange(E)))))),E=[];for(k=w;k=k.parentNode;)1===k.nodeType&&E.push({element:k,left:k.scrollLeft,top:k.scrollTop});for("function"==typeof w.focus&&w.focus(),w=0;w=t&&e<=t}function To(e,t){var n=e.firstSuspendedTime,r=e.lastSuspendedTime;nt||0===n)&&(e.lastSuspendedTime=t),t<=e.lastPingedTime&&(e.lastPingedTime=0),t<=e.lastExpiredTime&&(e.lastExpiredTime=0)}function Co(e,t){t>e.firstPendingTime&&(e.firstPendingTime=t);var n=e.firstSuspendedTime;0!==n&&(t>=n?e.firstSuspendedTime=e.lastSuspendedTime=e.nextKnownPendingLevel=0:t>=e.lastSuspendedTime&&(e.lastSuspendedTime=t+1),t>e.nextKnownPendingLevel&&(e.nextKnownPendingLevel=t))}function No(e,t){var n=e.lastExpiredTime;(0===n||n>t)&&(e.lastExpiredTime=t)}function Po(e,t,n,o){var a=t.current,i=Fr(),l=su.suspense;i=jr(i,a,l);e:if(n){n=n._reactInternalFiber;t:{if(J(n)!==n||1!==n.tag)throw Error(r(170));var u=n;do{switch(u.tag){case 3:u=u.stateNode.context;break t;case 1:if(It(u.type)){u=u.stateNode.__reactInternalMemoizedMergedChildContext;break t}}u=u.return}while(null!==u);throw Error(r(171))}if(1===n.tag){var s=n.type;if(It(s)){n=Dt(n,s,u);break e}}n=u}else n=Al;return null===t.context?t.context=n:t.pendingContext=n,t=on(i,l),t.payload={element:e},o=void 0===o?null:o,null!==o&&(t.callback=o),an(a,t),Dr(a,i),i}function Oo(e){if(e=e.current,!e.child)return null;switch(e.child.tag){case 5:return e.child.stateNode;default:return e.child.stateNode}}function Ro(e,t){e=e.memoizedState,null!==e&&null!==e.dehydrated&&e.retryTime