• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Thu, 18.07.24

Search results


July 2003
R. Satran and Y. Almog

Sepsis is an infection-induced inflammatory syndrome that results in a complex network of adaptive and maladaptive alterations in homeostatic mechanisms. Severe sepsis, defined as sepsis associated with acute organ failure, is a serious disease with a mortality rate of 30–50%. The coagulation system, through complex interactions, has an important role in the final outcome of the sepsis-induced inflammatory cascade. A fine and delicate balance that normally exists between anticoagulant mechanisms and the procoagulant response is altered in sepsis. Activated protein C, an endogenous vitamin K-dependent anticoagulant, plays a major role in the down-regulation of the procoagulant arm. It also possesses anti-inflammatory properties. Endothelial damage during sepsis impairs the endothelium-dependent activation of protein C, thus shifting the balance towards thrombosis. This shift may contribute to the development of sepsis-related multi-organ failure. Evidence suggesting that activation of the coagulation system may contribute to sepsis-related morbidity and mortality has led to extensive research attempting to correct the hemostatic defects seen in septic patients. Indeed, a recent randomized controlled trial demonstrated a reduction in overall mortality in patients with severe sepsis treated with APC[1]. In this review we discuss the pathogenesis of the coagulopathy of sepsis, as well as the new therapeutic approaches aimed at correcting the defects in the coagulation system.






[1] APC = activated protein C


June 2003
D. Lev, I. Binson, A.J.H. Foldes, N. Waternberg and T. Lerman-Sagie

Background: The osteoporosis-pseudoglioma syndrome is a rare autosomal recessive disorder characterized by severe juvenile-onset osteoporosis and congenital or early-onset blindness. Other manifestations include muscular hypotonia, ligamentous laxity, mild mental retardation and seizures. The gene responsible was recently identified to be the low density lipoprotein receptor-related family member LRP5 on chromosome 11q11-12.

Objective: To measure bone density in two siblings with the OPPG[1] syndrome as well as in their family members (parents and siblings).

Methods: Bone mineral density was determined in the lumbar spine (antero-posterior), femoral neck, two-thirds distal forearm (>95% cortical bone) and ultradistal forearm (predominantly trabecular bone) by dual-energy X-ray absorptiometry.

Results: The studies revealed osteoporotic changes both in the patients and the carriers.

Conclusion: The findings demonstrate that OPPG carriers have reduced bone mass, which is a risk factor for development of early osteoporotic changes.

____________________________________


[1] OPPG = osteoporosis-pseudoglioma


J. Lachter, A. Suissa, E. Schiff and I. Rosner
March 2003
I. Sukhotnik, L. Siplovich, M.M. Krausz and E. Shiloni

Intestinal adaptation is the term applied to progressive recovery from intestinal failure following a loss of intestinal length. The regulation of intestinal adaptation is maintained through a complex interaction of many different factors. These include nutrients and other luminal constituents, hormones, and peptide growth factors. The current paper discusses the role of peptide growth factors in intestinal adaptation following massive small bowel resection. This review focuses on the mechanisms of action of peptide growth factors in intestinal cell proliferation, and summarizes the effects of these factors on intestinal regrowth in an animal model of short bowel syndrome.

Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel