• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Tue, 01.04.25

Search results


March 2025
Nechama Sharon MD

Pediatrics stands at the forefront of medical innovation, from neonatal care to the management of complex acute and chronic conditions. The field continues to evolve, driven by pioneering research. Advances in genetics, technology, and personalized medicine are transforming pediatric care, addressing the diverse needs of children globally, and offering new opportunities to enhance health outcomes and quality of life.

Raouf Nassar MD, Nour Ealiwa MD, Lior Hassan MD PHD, Gadi Howard MD Msc, Rotem Shalev Shamay MD, Slava Kogan MD, Nadine Abboud MD, Baruch Yerushalmi MD, Galina Ling MD

Background: Wilson disease (WD) is an autosomal recessive disease characterized by a defect in hepatocellular copper transport with a wide spectrum of clinical manifestations and reported prevalence.

Objectives: To study the epidemiology and clinical manifestations of WD between two ethnic groups, Jewish and Bedouins, with different marriage patterns, in southern Israel.

Methods: We conducted a retrospective study investigating the clinical course and laboratory characteristics of children diagnosed with WD who were treated at Soroka University Medical Center.

Results: Sixteen patients were diagnosed between 2000 and 2021 (8 males, 50%), 14 were of Bedouins origin. The total cohort prevalence was 1:19,258 while the prevalence of the disease was significantly higher among Bedouins compared to Jews (1:10,828 vs.1:78,270, P-value = 0.004). The median age at diagnosis was 10.2 years, without a significant difference between the groups. The most common presenting symptom was hepatic manifestations: 81.2% had elevated transaminases, 12.5% had jaundice, 25% had neurological symptoms, one had a Kayser-Fleischer ring, and one had psychosis. The mean ceruloplasmin level was 3.0 mg/dl. During follow-up, nine patients normalized transaminases with treatment, while three required liver transplantation. There was no significant difference in the clinical presentation and disease course between the two ethnic groups.

Conclusions: Our cohort showed a high prevalence of WD compared to previous studies, especially among the Bedouin population, which has a high consanguinity rate. The prognosis of WD in our population is similar to other studies and depends mainly on treatment compliance.

Maayan Mandelbaum MD, Daniella Levy-Erez MD, Shelly Soffer MD, Eyal Klang MD, Sarina Levy-Mendelovich MD

Artificial Intelligence (AI), particularly large language models (LLMs) like OpenAI's ChatGPT, has shown potential in various medical fields, including pediatrics. We evaluated the utility and integration of LLMs in pediatric medicine. We conducted a search in PubMed using specific keywords related to LLMs and pediatric care. Studies were included if they assessed LLMs in pediatric settings, were published in English, peer-reviewed, and reported measurable outcomes. Sixteen studies spanning pediatric sub-specialties such as ophthalmology, cardiology, otology, and emergency medicine were analyzed. The findings indicate that LLMs provide valuable diagnostic support and information management. However, their performance varied, with limitations in complex clinical scenarios and decision-making. Despite excelling in tasks requiring data summarization and basic information delivery, the effectiveness of the models in nuanced clinical decision-making was restricted. LLMs, including ChatGPT, show promise in enhancing pediatric medical care but exhibit inconsistent performance in complex clinical situations. This finding underscores the importance of continuous human oversight. Future integration of LLMs into clinical practice should be approached with caution to ensure they supplement, rather than supplant, expert medical judgment.

June 2024
Elias Nasrallah MD, Hussein Zaitoon MD, Marina Zeltser MD, Ran Steinberg MD, Ran Miron MD, Hanna Farah MD, Ranaa Damouni-Shalabi MD, Imad Kassis MD, Halima Dabaja-Younis MD MPH

Background: Pseudomonas aeruginosa (PSA) is an infectious pathogen associated with acute appendicitis; however, it is not consistently addressed by empirical antibiotic therapy, despite potential complications.

Objectives: To investigate the incidence, predictors, and outcomes of PSA-associated acute appendicitis in children.

Methods: We conducted a retrospective analysis involving pediatric patients who underwent acute appendicitis surgery and had positive peritoneal cultures. Clinical, microbiological, and intraoperative data were extracted from medical records.

Results: Among 2523 children with acute appendicitis, 798 (31.6%) underwent peritoneal cultures, revealing 338 positive cases (42.3%), with PSA detected in 77 cases (22.8%). Children with PSA were three times more likely to exhibit high intraoperative grading ≥ 3 (93.4% vs. 76.8%, 95% confidence interval [95%CI] 1.2–8.3, P = 0.023) and nearly four times more likely to have polymicrobial cultures (88.3% vs. 62.1%, 95%CI 1.8–8.0, P < 0.001) than those without PSA in peritoneal cultures. Duration of symptoms did not predict PSA isolation (P = 0.827). Patients with PSA had longer median hospital stays (8 days, interquartile range [IQR] 7–10) than those with other pathogens (7 days, IQR 5–9) (P = 0.004). Antibiotic treatment duration, intensive care unit admission rates, readmission, and mortality were similar between the two groups (P = 0.893, 0.197, 0.760, and 0.761, respectively).

Conclusions: PSA is a common pathogen in children diagnosed with acute appendicitis and positive peritoneal cultures. The likelihood of isolating PSA increases with high-grade intraoperative assessment and in the presence of multiple pathogens in peritoneal cultures, suggests antipseudomonal treatment.

March 2023
Sergei Elber-Dorozko MD, Yackov Berkun MD, Abraham Zlotogorski MD, Alexander Maly MD, Ariel Tenenbaum MD

IgA vasculitis, formerly known as Henoch–Schönlein purpura (HSP), is the most common systemic vasculitis in children. It is defined as palpable purpura in the absence of coagulopathy or thrombocytopenia and one or more of the following criteria: abdominal pain, arthritis or arthralgia, biopsy of affected tissue demonstrating predominant IgA deposition, and renal involvement with proteinuria and hematuria or red cell casts [1].

May 2022
Herman Avner Cohen MD, Maya Gerstein MD, Vered Shkalim Zemer MD, Sophia Heiman MD, Yael Richenberg MD, Eyal Jacobson MD, and Oren Berkowitz PhD PA-C

Background: On 18 March 2020, the Israeli Health Ministry issued lockdown orders to mitigate the spread of coronavirus disease 2019 (COVID-19).

Objectives: To assess the association of lockdown orders on telemedicine practice and the effect of social distancing on infectious diseases in a primary care community pediatric clinic as well as the rate of referrals to emergency departments (ED) and trends of hospitalization.

Methods: Investigators performed a retrospective secondary data analysis that screened for visits in a large pediatric center from 1 January to 31 May 2020. Total visits were compared from January to December 2020 during the same period in 2019. Visits were coded during the first lockdown as being via telemedicine or in-person, and whether they resulted in ED referral or hospitalization. Month-to-month comparisons were performed as well as percent change from the previous year.

Results: There was a sharp decline of in-person visits (24%) and an increase in telemedicine consultations (76%) during the first lockdown (p < 0.001). When the lockdown restrictions were eased, there was a rebound of 50% in-person visits (p < 0.05). There was a profound decrease of visits for common infectious diseases during the lockdown period. Substantial decreases were noted for overall visits, ED referrals, and hospitalizations in 2020 compared to 2019.

Conclusions: COVID-19 had a major impact on primary care clinics, resulting in fewer patient-doctor encounters, fewer overall visits, fewer ED referrals, and fewer hospitalizations

May 2021
Dotan Yogev MD, Yehonatan Bar Moshe MD, Hodaya Tovi MD, and David Rekhtman MD
April 2021
Eytan Damari MD, Alon Farfel MD, Itai Berger MD, Reut Ron, and Yonatan Yeshayahu MD

Background: The effect of extended shift length on pediatric residency is controversial. Israeli residents perform shifts extending up to 26 hours, a practice leading to general dissatisfaction. In early 2020, during the coronavirus disease-2019 (COVID-19) pandemic, many Israeli hospitals transitioned from 26-hour shifts to 13-hour shifts in fixed teams (capsules) followed by a 24-hour rest period at home. The regulation changes enacted by the Israeli government during the COVID-19 pandemic provided a rare opportunity to assess perception by residents regarding length of shifts before and after the change.

Objectives: To assess perception of pediatric residency in three aspects: resident wellness, ability to deliver quality healthcare, and acquisition of medical education following the change to the shorter shifts model.

Methods: We performed a prospective observational study among pediatric residents. Residents completed an online self-assessment questionnaire before and after the COVID-19 emergency regulations changed toward shorter shifts.

Results: Sixty-seven residents answered the questionnaires before (37) and after (30) the shift changes. The average score was significantly better for the 13-hour shifts versus the 26-hour shifts, except for questions regarding available time for research. There was a positive perception regarding the shorter night shifts model among pediatric residents, with an increase in general satisfaction and improvement in perception of general wellness, ability to deliver quality healthcare, and medical education acquisition.

Conclusions: Following the change to shorter shift length, perception of pediatric residents included improvement in wellness, ability to deliver quality healthcare, and availability of medical education

Michal Vinker-Shuster MD, Ephraim S. Grossman PhD, and Yonatan Yeshayahu MD

Background: The coronavirus disease-2019 (COVID-19) social-distancing strategy, including 7 weeks of strict lockdown, enabled an extraordinary test of stay-at-home regulations, which forced a sedentary lifestyle on all children and adolescents.

Objectives: To assess the lockdown effect on pediatric weight.

Methods: A retrospective-prospective cohort study at our hospital’s pediatric outpatient clinics following the COVID-19 lockdown. Patients aged 0–18 years visiting the clinic were weighed and previous weight and other clinical data were collected from the medical charts. Weight-percentile-for-age standardization was calculated according to the U.S. Centers for Disease Control and Prevention and the World Health Organization growth tables. Pre- and post-lockdown weight-percentiles-for-age were compared using paired t-test. Multivariate analysis was conducted using linear regression model.

Results: The study was comprised of 229 patients; 117/229 (51.1%) were boys, 60/229 (26.2%) aged under 6 years. Total mean weight-percentile was significantly higher following the lockdown (40.44 vs. 38.82, respectively, P = 0.029). Boys had a significant post-lockdown weight-percentile rise (37.66 vs. 34.42, P = 0.014), whereas girls had higher baseline pre-quarantine weight-percentile of 43.42, which did not change. Patients younger than 6 years had a significant increase in weight-percentiles (39.18 vs. 33.58, P = 0.021). In multivariate analysis these correlations were preserved.

Conclusions: A general weight gain among children was noted, especially in boys during the lockdown, with substantial effect under the age of 6 years. This collateral side-effect should be considered in further quarantine regulations

June 2018
Osher Cohen MD, Arthur Baazov MD, Inbal Samuk MD, Michael Schwarz MD, Dragan Kravarusic MD1 and Enrique Freud MD

Background: Wandering spleen is a rare entity that may pose a surgical emergency following torsion of the splenic vessels, mainly because of a delayed diagnosis. Complications after surgery for wandering spleen may necessitate emergency treatment.

Objectives: To describe the clinical course and treatment for children who underwent emergency surgeries for wandering spleen at a tertiary pediatric medical center over a 21 year period and to indicate the pitfalls in diagnosis and treatment as reflected by our experience and in the literature.

Methods: The database of a tertiary pediatric medical center was searched retrospectively for all children who underwent emergency treatment for wandering spleen between 1996 and 2017. Data were collected from the medical files. The relevant literature was reviewed.

Results: Of ten patients who underwent surgery for wandering spleen during the study period, five underwent seven emergency surgeries. One patient underwent surgery immediately at initial presentation. In the other four, surgical treatment was delayed either due to misdiagnosis or for repeated imaging studies to confirm the diagnosis. Emergency laparotomy revealed an ischemic spleen in all patients; splenectomy was performed in two and the spleen was preserved in three. Four of the seven emergency operations were performed as the primary surgery and three were performed to treat complications.

Conclusions: Wandering spleen should ideally be treated on an elective or semi-elective basis. Surgical delays could be partially minimized by a high index of suspicion at diagnosis and by eliminating unnecessary and time-consuming repeated imaging studies.

January 2018
Michalle Soudack MD, Semion Plotkin MD, Aviva Ben-Shlush MD, Lisa Raviv-Zilka MD, Jeffrey M. Jacobson MD, Michael Benacon MD and Arie Augarten MD

Background: Opinions differ as to the need of a lateral radiograph for diagnosing community acquired pneumonia in children referred to the emergency department. A lateral radiograph increases the ionizing radiation burden but at the same time may improve specificity and sensitivity in this population.

Objectives: To determine the value of the frontal and lateral chest radiographs compared to frontal view stand-alone images for the management of children with suspected community acquired pneumonia seen in a pediatric emergency department.

Methods: Chest radiographs from 451 children with clinically suspected pneumonia were retrospectively reviewed. Interpretation of frontal views was compared to interpretation of combined frontal and lateral view, the latter being the gold standard.

Results: Findings consistent with bacterial pneumonia were diagnosed in 94 (20.8%) of the frontal stand-alone radiographs and in 109 (24.2%) of the combined frontal and lateral radiographs. The sensitivity, specificity, positive predictive value, and negative predictive value of the frontal radiograph alone were 86.2%, 93.9%, 81.7%, and 95.5%, respectively. False positive and false negative rates were 15% and 21%, respectively, for the frontal view alone. The number of lateral radiographs needed to diagnose one community acquired pneumonia was 29.

Conclusions: The lateral chest radiograph improves the diagnosis of pediatric community acquired pneumonia to a certain degree and may prevent overtreatment with antibiotics.

October 2017
Natalia Simanovsky MD, Nurith Hiller MD, Maxim Timofeev, Eli M. Eisenshtein MD, Zeev Perles MD and Sigal Tal MD

Background: Virtual autopsies by computer tomography (CT) or magnetic resonance imaging can be valuable in cases of unexplained infant death. The radiologist must be familiar with the normal appearance of all the segments of the thoracic aorta in normal and deceased children. A thorough review of the literature revealed no prior articles describing CT changes in the ascending aorta or the aortic arch in pediatric virtual autopsies.

Objectives: To compare the CT appearance of the thoracic aorta in deceased children and in those younger than 3 years of age.

Methods: Hospital registries were searched for cases of unexpected deaths in children younger than 3 years old, with a postmortem CT available, as well as for clinically indicated chest CT in children of the same age during a 5 year period. The ascending aorta (AA), aortic arch (arch), and the descending aorta (DA) diameters were measured. Student's t-tests and Mann–Whitney U-tests were used to compare the two groups.

Results: A total of 64 scans were reviewed: 35 postmortem and 29 performed on living patients. The differences in the diameter and the ratios of the diameter between the AA and the arch, as well as between the arch and the DA in the postmortem and living groups were statistically significant (P < 0.05).

Conclusions: On postmortem CT scans, we found focal tapering of the aortic caliber at the level of the arch between the origin of the brachiocephalic artery and left subclavian artery. This finding should not be misinterpreted as a hypoplastic aortic arch.

 

Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel
ניתן להשתמש בחצי המקלדת בכדי לנווט בין כפתורי הרכיב
",e=e.removeChild(e.firstChild)):"string"==typeof o.is?e=l.createElement(a,{is:o.is}):(e=l.createElement(a),"select"===a&&(l=e,o.multiple?l.multiple=!0:o.size&&(l.size=o.size))):e=l.createElementNS(e,a),e[Ni]=t,e[Pi]=o,Pl(e,t,!1,!1),t.stateNode=e,l=Ae(a,o),a){case"iframe":case"object":case"embed":Te("load",e),u=o;break;case"video":case"audio":for(u=0;u<$a.length;u++)Te($a[u],e);u=o;break;case"source":Te("error",e),u=o;break;case"img":case"image":case"link":Te("error",e),Te("load",e),u=o;break;case"form":Te("reset",e),Te("submit",e),u=o;break;case"details":Te("toggle",e),u=o;break;case"input":A(e,o),u=M(e,o),Te("invalid",e),Ie(n,"onChange");break;case"option":u=B(e,o);break;case"select":e._wrapperState={wasMultiple:!!o.multiple},u=Uo({},o,{value:void 0}),Te("invalid",e),Ie(n,"onChange");break;case"textarea":V(e,o),u=H(e,o),Te("invalid",e),Ie(n,"onChange");break;default:u=o}Me(a,u);var s=u;for(i in s)if(s.hasOwnProperty(i)){var c=s[i];"style"===i?ze(e,c):"dangerouslySetInnerHTML"===i?(c=c?c.__html:void 0,null!=c&&Aa(e,c)):"children"===i?"string"==typeof c?("textarea"!==a||""!==c)&&X(e,c):"number"==typeof c&&X(e,""+c):"suppressContentEditableWarning"!==i&&"suppressHydrationWarning"!==i&&"autoFocus"!==i&&(ea.hasOwnProperty(i)?null!=c&&Ie(n,i):null!=c&&x(e,i,c,l))}switch(a){case"input":L(e),j(e,o,!1);break;case"textarea":L(e),$(e);break;case"option":null!=o.value&&e.setAttribute("value",""+P(o.value));break;case"select":e.multiple=!!o.multiple,n=o.value,null!=n?q(e,!!o.multiple,n,!1):null!=o.defaultValue&&q(e,!!o.multiple,o.defaultValue,!0);break;default:"function"==typeof u.onClick&&(e.onclick=Fe)}Ve(a,o)&&(t.effectTag|=4)}null!==t.ref&&(t.effectTag|=128)}return null;case 6:if(e&&null!=t.stateNode)Ll(e,t,e.memoizedProps,o);else{if("string"!=typeof o&&null===t.stateNode)throw Error(r(166));n=yn(yu.current),yn(bu.current),Jn(t)?(n=t.stateNode,o=t.memoizedProps,n[Ni]=t,n.nodeValue!==o&&(t.effectTag|=4)):(n=(9===n.nodeType?n:n.ownerDocument).createTextNode(o),n[Ni]=t,t.stateNode=n)}return null;case 13:return zt(vu),o=t.memoizedState,0!==(64&t.effectTag)?(t.expirationTime=n,t):(n=null!==o,o=!1,null===e?void 0!==t.memoizedProps.fallback&&Jn(t):(a=e.memoizedState,o=null!==a,n||null===a||(a=e.child.sibling,null!==a&&(i=t.firstEffect,null!==i?(t.firstEffect=a,a.nextEffect=i):(t.firstEffect=t.lastEffect=a,a.nextEffect=null),a.effectTag=8))),n&&!o&&0!==(2&t.mode)&&(null===e&&!0!==t.memoizedProps.unstable_avoidThisFallback||0!==(1&vu.current)?rs===Qu&&(rs=Yu):(rs!==Qu&&rs!==Yu||(rs=Gu),0!==us&&null!==es&&(To(es,ns),Co(es,us)))),(n||o)&&(t.effectTag|=4),null);case 4:return wn(),Ol(t),null;case 10:return Zt(t),null;case 17:return It(t.type)&&Ft(),null;case 19:if(zt(vu),o=t.memoizedState,null===o)return null;if(a=0!==(64&t.effectTag),i=o.rendering,null===i){if(a)mr(o,!1);else if(rs!==Qu||null!==e&&0!==(64&e.effectTag))for(i=t.child;null!==i;){if(e=_n(i),null!==e){for(t.effectTag|=64,mr(o,!1),a=e.updateQueue,null!==a&&(t.updateQueue=a,t.effectTag|=4),null===o.lastEffect&&(t.firstEffect=null),t.lastEffect=o.lastEffect,o=t.child;null!==o;)a=o,i=n,a.effectTag&=2,a.nextEffect=null,a.firstEffect=null,a.lastEffect=null,e=a.alternate,null===e?(a.childExpirationTime=0,a.expirationTime=i,a.child=null,a.memoizedProps=null,a.memoizedState=null,a.updateQueue=null,a.dependencies=null):(a.childExpirationTime=e.childExpirationTime,a.expirationTime=e.expirationTime,a.child=e.child,a.memoizedProps=e.memoizedProps,a.memoizedState=e.memoizedState,a.updateQueue=e.updateQueue,i=e.dependencies,a.dependencies=null===i?null:{expirationTime:i.expirationTime,firstContext:i.firstContext,responders:i.responders}),o=o.sibling;return Mt(vu,1&vu.current|2),t.child}i=i.sibling}}else{if(!a)if(e=_n(i),null!==e){if(t.effectTag|=64,a=!0,n=e.updateQueue,null!==n&&(t.updateQueue=n,t.effectTag|=4),mr(o,!0),null===o.tail&&"hidden"===o.tailMode&&!i.alternate)return t=t.lastEffect=o.lastEffect,null!==t&&(t.nextEffect=null),null}else 2*ru()-o.renderingStartTime>o.tailExpiration&&1t)&&vs.set(e,t)))}}function Ur(e,t){e.expirationTimee?n:e,2>=e&&t!==e?0:e}function qr(e){if(0!==e.lastExpiredTime)e.callbackExpirationTime=1073741823,e.callbackPriority=99,e.callbackNode=$t(Vr.bind(null,e));else{var t=Br(e),n=e.callbackNode;if(0===t)null!==n&&(e.callbackNode=null,e.callbackExpirationTime=0,e.callbackPriority=90);else{var r=Fr();if(1073741823===t?r=99:1===t||2===t?r=95:(r=10*(1073741821-t)-10*(1073741821-r),r=0>=r?99:250>=r?98:5250>=r?97:95),null!==n){var o=e.callbackPriority;if(e.callbackExpirationTime===t&&o>=r)return;n!==Yl&&Bl(n)}e.callbackExpirationTime=t,e.callbackPriority=r,t=1073741823===t?$t(Vr.bind(null,e)):Wt(r,Hr.bind(null,e),{timeout:10*(1073741821-t)-ru()}),e.callbackNode=t}}}function Hr(e,t){if(ks=0,t)return t=Fr(),No(e,t),qr(e),null;var n=Br(e);if(0!==n){if(t=e.callbackNode,(Ju&(Wu|$u))!==Hu)throw Error(r(327));if(lo(),e===es&&n===ns||Kr(e,n),null!==ts){var o=Ju;Ju|=Wu;for(var a=Yr();;)try{eo();break}catch(t){Xr(e,t)}if(Gt(),Ju=o,Bu.current=a,rs===Ku)throw t=os,Kr(e,n),To(e,n),qr(e),t;if(null===ts)switch(a=e.finishedWork=e.current.alternate,e.finishedExpirationTime=n,o=rs,es=null,o){case Qu:case Ku:throw Error(r(345));case Xu:No(e,2=n){e.lastPingedTime=n,Kr(e,n);break}}if(i=Br(e),0!==i&&i!==n)break;if(0!==o&&o!==n){e.lastPingedTime=o;break}e.timeoutHandle=Si(oo.bind(null,e),a);break}oo(e);break;case Gu:if(To(e,n),o=e.lastSuspendedTime,n===o&&(e.nextKnownPendingLevel=ro(a)),ss&&(a=e.lastPingedTime,0===a||a>=n)){e.lastPingedTime=n,Kr(e,n);break}if(a=Br(e),0!==a&&a!==n)break;if(0!==o&&o!==n){e.lastPingedTime=o;break}if(1073741823!==is?o=10*(1073741821-is)-ru():1073741823===as?o=0:(o=10*(1073741821-as)-5e3,a=ru(),n=10*(1073741821-n)-a,o=a-o,0>o&&(o=0),o=(120>o?120:480>o?480:1080>o?1080:1920>o?1920:3e3>o?3e3:4320>o?4320:1960*Uu(o/1960))-o,n=o?o=0:(a=0|l.busyDelayMs,i=ru()-(10*(1073741821-i)-(0|l.timeoutMs||5e3)),o=i<=a?0:a+o-i),10 component higher in the tree to provide a loading indicator or placeholder to display."+N(i))}rs!==Zu&&(rs=Xu),l=yr(l,i),f=a;do{switch(f.tag){case 3:u=l,f.effectTag|=4096,f.expirationTime=t;var w=Ar(f,u,t);ln(f,w); break e;case 1:u=l;var E=f.type,k=f.stateNode;if(0===(64&f.effectTag)&&("function"==typeof E.getDerivedStateFromError||null!==k&&"function"==typeof k.componentDidCatch&&(null===ms||!ms.has(k)))){f.effectTag|=4096,f.expirationTime=t;var _=Ir(f,u,t);ln(f,_);break e}}f=f.return}while(null!==f)}ts=no(ts)}catch(e){t=e;continue}break}}function Yr(){var e=Bu.current;return Bu.current=Cu,null===e?Cu:e}function Gr(e,t){eus&&(us=e)}function Jr(){for(;null!==ts;)ts=to(ts)}function eo(){for(;null!==ts&&!Gl();)ts=to(ts)}function to(e){var t=Fu(e.alternate,e,ns);return e.memoizedProps=e.pendingProps,null===t&&(t=no(e)),qu.current=null,t}function no(e){ts=e;do{var t=ts.alternate;if(e=ts.return,0===(2048&ts.effectTag)){if(t=br(t,ts,ns),1===ns||1!==ts.childExpirationTime){for(var n=0,r=ts.child;null!==r;){var o=r.expirationTime,a=r.childExpirationTime;o>n&&(n=o),a>n&&(n=a),r=r.sibling}ts.childExpirationTime=n}if(null!==t)return t;null!==e&&0===(2048&e.effectTag)&&(null===e.firstEffect&&(e.firstEffect=ts.firstEffect),null!==ts.lastEffect&&(null!==e.lastEffect&&(e.lastEffect.nextEffect=ts.firstEffect),e.lastEffect=ts.lastEffect),1e?t:e}function oo(e){var t=qt();return Vt(99,ao.bind(null,e,t)),null}function ao(e,t){do lo();while(null!==gs);if((Ju&(Wu|$u))!==Hu)throw Error(r(327));var n=e.finishedWork,o=e.finishedExpirationTime;if(null===n)return null;if(e.finishedWork=null,e.finishedExpirationTime=0,n===e.current)throw Error(r(177));e.callbackNode=null,e.callbackExpirationTime=0,e.callbackPriority=90,e.nextKnownPendingLevel=0;var a=ro(n);if(e.firstPendingTime=a,o<=e.lastSuspendedTime?e.firstSuspendedTime=e.lastSuspendedTime=e.nextKnownPendingLevel=0:o<=e.firstSuspendedTime&&(e.firstSuspendedTime=o-1),o<=e.lastPingedTime&&(e.lastPingedTime=0),o<=e.lastExpiredTime&&(e.lastExpiredTime=0),e===es&&(ts=es=null,ns=0),1u&&(c=u,u=l,l=c),c=Ue(w,l),f=Ue(w,u),c&&f&&(1!==k.rangeCount||k.anchorNode!==c.node||k.anchorOffset!==c.offset||k.focusNode!==f.node||k.focusOffset!==f.offset)&&(E=E.createRange(),E.setStart(c.node,c.offset),k.removeAllRanges(),l>u?(k.addRange(E),k.extend(f.node,f.offset)):(E.setEnd(f.node,f.offset),k.addRange(E)))))),E=[];for(k=w;k=k.parentNode;)1===k.nodeType&&E.push({element:k,left:k.scrollLeft,top:k.scrollTop});for("function"==typeof w.focus&&w.focus(),w=0;w=t&&e<=t}function To(e,t){var n=e.firstSuspendedTime,r=e.lastSuspendedTime;nt||0===n)&&(e.lastSuspendedTime=t),t<=e.lastPingedTime&&(e.lastPingedTime=0),t<=e.lastExpiredTime&&(e.lastExpiredTime=0)}function Co(e,t){t>e.firstPendingTime&&(e.firstPendingTime=t);var n=e.firstSuspendedTime;0!==n&&(t>=n?e.firstSuspendedTime=e.lastSuspendedTime=e.nextKnownPendingLevel=0:t>=e.lastSuspendedTime&&(e.lastSuspendedTime=t+1),t>e.nextKnownPendingLevel&&(e.nextKnownPendingLevel=t))}function No(e,t){var n=e.lastExpiredTime;(0===n||n>t)&&(e.lastExpiredTime=t)}function Po(e,t,n,o){var a=t.current,i=Fr(),l=su.suspense;i=jr(i,a,l);e:if(n){n=n._reactInternalFiber;t:{if(J(n)!==n||1!==n.tag)throw Error(r(170));var u=n;do{switch(u.tag){case 3:u=u.stateNode.context;break t;case 1:if(It(u.type)){u=u.stateNode.__reactInternalMemoizedMergedChildContext;break t}}u=u.return}while(null!==u);throw Error(r(171))}if(1===n.tag){var s=n.type;if(It(s)){n=Dt(n,s,u);break e}}n=u}else n=Al;return null===t.context?t.context=n:t.pendingContext=n,t=on(i,l),t.payload={element:e},o=void 0===o?null:o,null!==o&&(t.callback=o),an(a,t),Dr(a,i),i}function Oo(e){if(e=e.current,!e.child)return null;switch(e.child.tag){case 5:return e.child.stateNode;default:return e.child.stateNode}}function Ro(e,t){e=e.memoizedState,null!==e&&null!==e.dehydrated&&e.retryTime