• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Thu, 21.11.24

Search results


October 2021
Amir Krivoy MD, Shai Shrot MD, Matan Avrahami MD, Tsvi Fischel MD, Abraham Weizman MD, Yael Mardor PhD, David Guez PhD, Dianne Daniels PhD, Athos Katelaris BSc, David Last PhD, and Chen Hoffmann MD

Background: Only a small proportion of schizophrenia patients present with catatonic symptoms. Imaging studies suggest that brain motor circuits are involved in the underlying pathology of catatonia. However, data about diffusivity dysregulation of these circuits in catatonic schizophrenia are scarce.

Objectives: To assess the involvement of brain motor circuits in schizophrenia patients with catatonia.

Methods: Diffusion tensor imaging (DTI) was used to measure white matter signals in selected brain regions linked to motor circuits. Relevant DTI data of seven catatonic schizophrenia patients were compared to those of seven non-catatonic schizophrenia patients, matched for sex, age, and education level.

Results: Significantly elevated fractional anisotropy values were found in the splenium of the corpus callosum, the right peduncle of the cerebellum, and the right internal capsule of the schizophrenia patients with catatonia compared to those without catatonia. This finding showed altered diffusivity in selected motor-related brain areas.

Conclusions: Catatonic schizophrenia is associated with dysregulation of the connectivity in specific motoric brain regions and corresponding circuits. Future DTI studies are needed to address the neural correlates of motor abnormalities in schizophrenia-related catatonia during the acute and remitted state of the illness to identify the specific pathophysiology of this disorder.

March 2009
B. Makhoul, E. Braun, M. Herskovitz, R. Ramadan, S. Haddad and N. Krivoy

Background: West Nile virus, the etiologic agent of West Nile fever, is an emerging mosquito-borne disease. WNV[1] was recognized as a cause of severe human meningo-encephalitis in elderly patients during outbreaks in various parts of the world.

Objectives: To analyze WNV encephalitis therapy and its outcome after prescribing hyperimmune gammaglobulin therapy.

Methods: Eight subjects with WNV encephalitis were treated with supportive therapy and 5 days of IVIG[2] 0.4 g/kg/day containing high WNV antibodies obtained from healthy blood donors.

Results: Patients who were treated with IVIG as soon as possible exhibited an improvement in their symptoms. All subjects presented with high fever, progressive confusion and headaches, nausea and vomining. The Glasgow Coma Screen for six patients ranged between 8 and 13 and all were discharged with a score of 15. The remaining two subjects died during their hospitalization.

Conclusions: In severe WNV infection, where the disease affects the central and/or peripheral nervous system, early intervention with IVIG together with supportive treatment is recommended.





[1] WNV = West Nile virus

[2] IVIG = intravenous hyperimmune gammaglobulin

November 2008
G. Markel, A. Krivoy, E. Rotman, O. Schein, S. Shrot, T. Brosh-Nissimov, T. Dushnitsky, A. Eisenkraft
The relative accessibility to various chemical agents, including chemical warfare agents and toxic industrial compounds, places a toxicological mass casualty event, including chemical terrorism, among the major threats to homeland security. TMCE[1] represents a medical and logistic challenge with potential hazardous exposure of first-response teams. In addition, TMCE poses substantial psychological and economical impact. We have created a simple response algorithm that provides practical guidelines for participating forces in TMCE. Emphasis is placed on the role of first responders, highlighting the importance of early recognition of the event as a TMCE, informing the command and control centers, and application of appropriate self-protection. The medical identification of the toxidrome is of utmost importance as it may dictate radically different approaches and life-saving modalities. Our proposed emergency management of TMCE values the “Scoop & Run” approach orchestrated by an organized evacuation plan rather than on-site decontamination. Finally, continuous preparedness of health systems – exemplified by periodic CBRN (Chemical, Biological, Radio-Nuclear) medical training of both first responders and hospital staff, mandatory placement of antidotal auto-injectors in all ambulances and CBRN[2] emergency kits in the emergency departments – would considerably improve the emergency medical response to TMCE.

 


[1] TMCE = toxicological mass casualty event

[2] CBRN = chemical, biological, radio-nuclear 
March 2005
I. Layish, A. Krivoy, E. Rotman, A. Finkelstein, Z. Tashma and Y. Yehezkelli
 Nerve agent poisoning is characterized by the rapid progression of toxic signs, including hypersecretions, tremor, convulsions and profound brain damage. In the political arena of today's world, the threat of nerve agent use against military troops has prompted armies to search for prophylactic protection. The two main strategies for prophylaxis include biological scavengers that can bind or cleave nerve agents before they react with AChE, and antidotes as prophylactic treatment. Pyridostigmine is the current pretreatment for nerve agent poisoning and is in use by most of the armed forces in Western countries. However, since pyridostigmine barely crosses the blood-brain barrier it provides no protection against nerve agent-induced central injury. Pyridostigmine is ineffective when administered without post-exposure treatment adjuncts. Therefore, other directions for prophylactic treatment should be explored. These include combinations of carbamates (reversible acetylcholinesterase inhibitors) and central anticholinergics or NMDA receptor antagonists, benzodiazepines or partial agonists for benzodiazepine receptor, and other central AChE[1] inhibitors approved for Alzheimer's disease. The transdermal route is an alternative way for delivering the prophylactic agent. Administration of prophylaxis can be extended also for civilian use during wartime.

______________

[1] AChE = acetylcholinesterase
July 2001
Noberto Krivoy, MD, Lili Struminger, MSc, Regina Bendersky, MD, Irit Avivi, MD, Manuela Neuman, PhD and Shimon Pollack, MD
Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel