• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Sat, 21.12.24

Search results


May 2005
J. Bishara, G. Livne, S. Ashkenazi, I. Levy, S. Pitlik, O. Ofir, B. Lev and Z. Samra

Background: The prevalence of extended-spectrum β-lactamase-producing organisms and their antimicrobial resistance patterns may vary between geographic areas.

Objectives: To evaluate the prevalence and susceptibility of ESBL[1]-producing organisms among Klebsiella pneumoniae and Escherichia coli isolated from adult and pediatric patients in two Israeli hospitals.

Methods: ESBL production was tested according to recommendations of the Clinical and Laboratory Standards Institute, using ceftazidime (30 μg) and a combination of ceftazidime/clavulanate (30/10 μg) disks with a ≥5 mm difference indicating positivity. Antibiotic susceptibilities were determined by the disk diffusion method according to CLSI[2] standards. Minimum inhibitory concentrations were determined by the E-test.

Results: The prevalence of ESBL-producing organisms was significantly higher among K. pneumoniae than E. coli isolates – 32% (241/765) vs. 10% (57/547) respectively (P < 0.001), and more frequently isolated from adults than children (odds ratio 2.27 for K. pneumoniae and 12.94 for E. coli). Resistance rates for amoxicillin/clavulanate, piperacillin-tazobactam, amikacin, and ciprofloxacin among the ESBL-producing K. pneumoniae and E. coli isolates were 95%, 82%, 49% and 77% for K. pneumoniae, and 77%, 35%, 25% and 100% for E. coli. Two (0.8%) ESBL-producing and 4 (0.7%) ESBL-negative K. pneumoniae isolates showed intermediate susceptibility (MIC[3] 6 μg/ml) to meropenem. All isolates were sensitive to ertapenem and colistin.  

Conclusion: ESBL production among K. pneumoniae and E. coli is more prevalent in the adult population than the pediatric population and is associated with multidrug resistance.







[1] ESBL = extended spectrum β-lactamase

[2] CLSI = Clinical and Laboratory Standards Institute (formerly the NCCLS)

[3] MIC = minimum inhibitory concentration





 

T. Monos, J. Levy, T. Lifshitz and M. Puterman
 Patients with silent sinus syndrome typically present for investigation of facial asymmetry. Unilateral, spontaneous enophthalmos and hypoglobus are the prominent findings at examination. Imaging of the orbit and sinuses characteristically show unilateral maxillary sinus opacification and collapse with inferior bowing of the orbital floor. It has been suggested that SSS[1] is due to hypoventilation of the maxillary sinus secondary to ostial obstruction and sinus atelectasis with chronic negative pressure within the sinus. Treatment involves functional endoscopic sinus surgery for reestablishing a functional drainage passage, and a reconstructive procedure of the floor of the orbit for repairing the hypoglobus and cosmetic deformity. Ophthalmologists, otorhinolaryngologists, and radiologists must be familiarized with this relatively newly reported disease.







[1] SSS = silent sinus syndrome


April 2005
February 2005
R. Yagev, E. Tsumi, J. Avigur, P. Polyakov, J. Levy and T. Lifshitz
 Background: Uveitis is an acute or chronic inflammatory process of the uvea caused by a number of etiologies. In many patients the etiology is unknown.

Objective: To investigate the effect of the Dead Sea environment (climatotherapy) on the signs, symptoms and clinical course of chronic uveitis.

Methods: Fifty-five patients with chronic uveitis were examined at the beginning and end of a 3–4 week stay at the Dead Sea region and on repeat visits to the region. Study data included demographic information, medical history, etiology, diagnosis, medication, and a complete ophthalmic examination.

Results: Statistically significant improvements were seen between the two examinations within each visit in four parameters (negative values indicate improvement): a) visual acuity for near and far: Jaeger (‑1.18 ± 0.28, P < 0.0001) and best corrected visual acuity (‑0.08 ± 0.02, P < 0.0001); b) anterior chamber flare (-0.18 ± 0.06, P < 0.01); c) anterior chamber cells (-0.16 ± 0.05), P < 0.001); and d) vitreous cells (-0.15 ± 0.09, P < 0.05). There was a significant mean improvement during visits to the Dead Sea area and a slight dissipation of the effect during the intervals between visits. Sixty-four percent of the patients reported that they required less medication and had fewer and milder attacks of uveitis following the visits.

Conclusions: The results of this study provide evidence of short- and possibly long-term improvement in the signs and symptoms of uveitis following exposure to the Dead Sea environment.

December 2004
November 2004
J. Levy, M. Puterman, T. Lifshitz, M. Marcus, A. Segal and T. Monos

Background: In patients with Graves’ ophthalmopathy, orbital decompression surgery is indicated for compressive optic neuropathy, severe corneal exposure, or for cosmetic deformity due to proptosis. Traditionally this has been performed through a transantral approach, but the associated complication rate is high. More recently, endoscopic orbital decompression has been performed successfully with significantly fewer postoperative complications.

Objective: To report our experience of endoscopic orbital decompression in patients with severe Graves’ ophthalmopathy.

Methods: Three patients (five eyes) underwent endoscopic orbital decompression for Graves’ ophthalmopathy at Soroka Medical Center between the years 2000 and 2002. The indications for surgery were compressive optic neuropathy in three eyes, severe corneal exposure in one eye, and severe proptosis not cosmetically acceptable for the patient in one case. An intranasal endoscopic approach with the removal of the medial orbital wall and medial part of the floor was performed.

Results: In all five eyes an average reduction of 5 mm in proptosis was achieved. Soon after surgery, visual acuity improved in the three cases with compressive optic neuropathy, and exposure keratopathy and cosmetic appearance improved. The diplopia remained unchanged. No complications were observed postoperatively.

Conclusions: Endoscopic orbital decompression with removal of the medial orbital wall and medial part of the floor in the five reported eyes was an effective and safe procedure for treatment of severe Graves’ ophthalmopathy. A close collaboration between ophthalmologists and otorhinolaryngologists skilled in endoscopic sinus surgery is crucial for the correct management of these patients.

October 2004
Y. Levy, O. Shovman, C. Granit, D. Luria, O. Gurevitz, D. Bar-Lev, M. Eldar, Y. Shoenfeld and M. Glikson

Background: The appearance of pericarditis following insertion of a permanent pacemaker is not widely acknowledged in the literature.

Objectives: To describe our experience with pericarditis following 395 permanent pacemaker implantations over 2 years.

Methods: We retrospectively reviewed the medical records of 395 consecutive patients in whom new pacing systems or pacemaker leads had been implanted over a 2 year period. We searched the records for pericarditis that developed within 1 month after pacemaker implantation according to the ICD-9 code. The incidence, clinical picture, response to treatment and relationship to lead design and location were studied.

Results: Eight cases (2%) of pericarditis following implantation were detected. Clinical manifestations in all patients were similar to those of post-pericardiotomy syndrome and included chest pain (n=7), friction rub (n=1), fever (n=2), fatigue (n=2), pleural effusion (n=2), new atrial fibrillation (n=2), elevated erythrocyte sedimentation rate (n=4) and echcardiographic evidence of pericardial effusion (n=8). All affected patients had undergone active fixation (screw-in) lead implantation in the atrial position. The incidence of pericarditis with screw-in atrial leads was 3% compared to 0% in other cases (P < 0.05).

Conclusions: Pericarditis is not uncommon following pacemaker implantation with active fixation atrial leads. Special attention should be paid to identifying pericardial complications following pacemaker implantation, especially when anticoagulant therapy is resumed or initiated. The use of passive fixation leads is likely to reduce the incidence of pericarditis but this issue should be further investigated.

September 2004
O. Efrati, D. Modan-Moses, A. Barak, Y. Boujanover, A. Augarten, A. Szeinberg, I. Levy and Y. Yahav

Background: Pulmonary disease is the most frequent cause of morbidity and mortality in cystc fibrosis patients. New techniques such as non-invasive positive pressure ventilation have resulted in prolongation of life expectancy in CF[1] patients with end-stage lung disease.

Objectives: To determine the role of NIPPV[2] in CF patients awaiting lung transplantation.

Methods: Between 1996 and 2001 nine CF patients (5 females) with end-stage lung disease were treated with bi-level positive airway pressure ventilation in the "spontaneous" mode.

Results: The patients' mean age at initiation of BiPAP[3] was 15 years (range 13–40 years) and the mean duration of BiPAP usage was 8 months (range 3–16 months). Four patients underwent successful lung transplantation, three patients died while awaiting transplantation, and the remaining two are still on NIPPV while waiting for transplantation. Patients' body mass index increased significantly (P < 0.05) during BiPAP therapy (from 16.1 to 17.2 kg/m2). Blood pH, paCO2, and bicarbonate improved significantly (from 7.31 to 7.38, 90.8 to 67.2 mmHg, and 48.9 to 40.3 mEq/L, respectively). Pulmonary function tests were not affected by BiPAP usage. The patients experienced a significant alleviation in morning headaches and improvement in quality of sleep (P < 0.003). There were no major complications during BiPAP usage.

Conclusions: We demonstrated that long-term NIPPV can stabilize and improve physiologic parameters such as ventilation, arterial blood gases and body mass index, as well as subjective symptoms such as sleep pattern, daily activity level, and morning headaches in CF patients with end-stage lung disease. Further prospectively controlled studies are needed to evaluate the potential of BiPAP therapy and its influence on morbidity and mortality in the post-lung transplantation period.






[1] CF = cystic fibrosis

[2] NIPPV = non-invasive positive pressure ventilation

[3] BiPAP = bi-level positive airway pressure ventilation


J. Levy, T. Monos, J. Kapelushnik, E. Maor, M. Nash and T. Lifshitz

Histiocytosis of childhood is characterized by localized or generalized proliferation of cells of the mononuclear phagocyte system and the dendritic cell system. In patients with Langerhans cell histiocytosis, the orbita is the most involved site encountered in ophthalmic practice, usually as a lytic lesion in the zygomaticofrontal suture. Patients usually present with acute or chronic periorbital swelling. Electron microscopic findings of Birbeck granules and positive staining for CD1 antigenic determinant confirm the diagnosis.

November 2003
A. Halevy, A. Stepanasky, Z. Halpern, I. Wasserman, Z. Chen-Levy, S. Pytlovich, O. Marcus, A. Mor, P. Hagag, T. Horne, S. Polypodi and J. Sandbank

Background: Among the various new technologies in the field of parathyroid surgery are intraoperative quick parathormone measurements.

Objectives: To evaluate the contribution of QPTH[1] measurements during parathyroidectomy to the achievement of higher success rates. 

Methods: QPTH assay using Immulite Turbo Intact PTH[2] was measured in 32 patients undergoing parathyroidectomy: 30 for primary and 2 for secondary hyperparathyroidism.  QPTH levels were measured at time 0 minutes (before incision) and at 10, 20, and 30 minutes after excision of the hyperfunctioning gland.  Only a drop of 60% or more from the 0’ level was considered to be a positive result.

Results: The mean QPTH level at time 0’ for PHPT[3] patients was 38.12 ± 25.15 pmol/L (range 9.1–118 pmol/L).  At 10 minutes post-excision of the hyperfunctioning gland (or glands), QPTH dropped by a mean of 73.80% to 9.89 ± 18.78 pmol/L. 

Conclusions: Intraoperative QPTH level measurement is helpful in parathyroid surgery.  A drop of 60% or more from 0’ level indicates a successful procedure, and further exploration should be avoided.






[1] QPTH = quick parathormone



[2] PTH = parathormone



[3] PHPT = primary hyperparathyroidism


Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel