• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Thu, 23.01.25

Search results


November 2023
Gassan Moady MD, Moanis Serhan MD, Shaul Atar MD, Alexander Shturman MD

Background: The continuity equation (CE) used for evaluating aortic stenosis (AS) is based on values obtained from transthoracic echocardiography (TTE) with the assumption that the left ventricular outflow tract (LVOT) has a circular shape. Transesophageal echocardiography (TEE) may be used for accurate measurement of the LVOT cross-sectional area (CSA). Previous studies have focused on fusion from TEE for LVOT-CSA measurement and TTE for velocity time integrals (VTI) calculations.

Objectives: To assess aortic valve area (AVA) using parameters obtained exclusively from TEE as an alternative approach.

Methods: Thirty patients with equivocal AS based on TTE were evaluated using TEE for further assessment.

Results: The mean pressure gradient across the aortic valve (AV) was 38 ± 5.9 and 37.9 ± 7.6 mmHg in TTE and TEE, respectively, P = 0.42. LVOT-CSA was larger in TEE (3.6 ± 0.3 vs. 3.4 ± 0.3 cm2, P = 0.049). VTI over the AVA was similar (98.54 ± 22.8 and 99.52 ± 24.52 cm in TTE and TEE, respectively, P = 0.608), while VTI across the LVOT was higher when measured by TTE (24.06 ± 5.8 vs. 22.03 ± 4.3 cm, P < 0.009). Using the CE, AVA was 0.82 ± 0.3 vs. 0.83 ± 0.17 cm2 in TEE vs. TTE, respectively, P = 0.608. Definitive grading was achieved in all patients (26 patients defined with severe AS and 4 with moderate).

Conclusions: In equivocal cases of AS, full assessment using TEE may be a reliable modality for decision making.

August 2023
Maya Shina MD, Fabio Kusniec MD, Guy Rozen MD MHA, Shemy Carasso MD FESC FASE, David Planer MD, Ronny Alcalai MD, Liza Grosman-Rimon PhD, Gabby Elbaz-Greener MD MHA DRCPSC, Offer Amir MD FACC

Background: Among the most frequent complications following transcatheter aortic valve replacement (TAVR) is hemostasis imbalance that presents either as thromboembolic or bleeding. Deviations in platelet count (PC) and mean platelet volume (MPV) are markers of hemostasis imbalance.

Objectives: To determine the predictive value of pre- and post-procedural PC and MPV fL 1-year all-cause mortality in patients who underwent TAVR.

Methods: In this population-based study, we included 236 TAVR patients treated at the Tzafon Medical Center between 1 June 2015 and 31 August 2018. Routine blood samples for serum PC levels and MPV fL were taken just before the TAVR and 24-hour post-TAVR. We used backward regression models to evaluate the predictive value of PC and MPV in all-cause mortality in TAVR patients.

Results: In this study cohort, MPV levels 24-hour post-TAVR that were greater than the cohort median of 9 fL (interquartile range 8.5–9.8) were the strongest predictor of 1-year mortality (hazard ratio 1.343, 95% confidence interval 1.059–1.703, P-value 0.015). A statistically significant relationship was seen in the unadjusted regression model as well as after the adjustment for clinical variables.

Conclusions: Serum MPV levels fL 24-hour post-procedure were found to be meaningful markers in predicting 1-year all-cause mortality in patients after TAVR.

April 2022
Ilan Merdler MD MHA, Shir Frydman MD, Svetlana Sirota MSc, Amir Halkin MD, Arie Steinvil MD, Ella Toledano MD, Maayan Konigstein MD, Batia Litmanowicz MD, Samuel Bazan MD, Atalia Wenkert BA, Sapir Sadon BA, Shmuel Banai MD, Ariel Finkelstein MD, and Yaron Arbel MD

Background: Neutrophil-to-lymphocyte ratio (NLR) is a simple and cost-effective marker of inflammation. This marker has been shown to predict cardiac arrhythmias, progression of valvular heart disease, congestive heart failure decompensation, acute kidney injury, and mortality in cardiovascular patients. The pathologic process of aortic stenosis includes chronic inflammation of the valve and therefore biomarkers of inflammation might offer additive prognostic value.

Objectives: To evaluate NLR and its association with long term mortality in transcatheter aortic valve implantation (TAVI) patients.

Methods: We evaluated data of 1152 consecutive patient from the Tel Aviv Medical Center TAVI registry who underwent TAVI. Data included baseline clinical, demographic, and echocardiographic findings; procedural complications; and post-procedure mortality. Patients were compared by using the median NLR value (4.1) and evaluated for long-term mortality.

Results: Patients with NLR above the median had higher mortality rates (26.4% vs. 16.3%, P < 0.001) at 3 years post-procedure. A multivariable analysis found NLR to be an independent risk factor for mortality (hazard ratio = 1.47, 95% confidence interval 1.09–1.99, P = 0.013). In addition, high NLR was linked to complicationsduring and after the procedure.

Conclusion: NLR is an independent prognostic marker among TAVI patients. This marker may represent an increased inflammatory response and should be added to previous known prognostic factors.

March 2022
Israel Mazin MD, Ori Vaturi MD, Rafael Kuperstein MD, Roy Beigel MD, Micha Feinberg MD, and Sagit Ben Zekry MD

Background: Estimated frequency of aortic stenosis (AS) in those over 75 years of age is 3.4%. Symptomatic patients with severe AS have increased morbidity and mortality and aortic valve replacement should be offered to improve life expectancy and quality of life.

Objectives: To identify whether systolic time intervals can identify severe AS.

Methods: The study comprised 200 patients (mean age 79 years, 55% men). Patients were equally divided into normal, mild, moderate, or severe AS. All patients had normal ejection fraction. Acceleration time (AT) was defined as the time from the beginning of systolic flow to maximal velocity; ejection time (ET) was the time from onset to end of systolic flow. The relation of AT/ET was calculated. Death or aortic valve intervention were documented.

AT increased linearly with the severity of AS, similar to ET and AT/ET ratio (P for trend < 0.05 for all). Receiver-operator characteristic curve analysis demonstrated that AT can identify severe AS with a cutoff ≥ 108 msec with 100% sensitivity and 98% specificity, while a cutoff of 0.34 when using AT/ET ratio can identify severe AS with 96% sensitivity and 94% specificity. Multivariate analysis adjusting to sex, stroke volume index, heart rate, and body mass index showed similar results. Kaplan-Meier curve for AT ≥ 108 and AT/ET ≥ 0.34 predicted death or aortic valve intervention in a 3-year follow-up.

Conclusions: Acceleration time and AT/ET ratio are reliable measurements for identifying patients with severe AS. Furthermore, AT and AT/ET were able to predict aortic valve replacement or death

Lian Bannon MD, Omer Shlezinger MD, Alexandra Nathan MD, Yan Topilsky MD, Ilan Merdler MD MHA, and Eihab Ghantous MD
October 2013
A. Finkelstein, E.Y. Birati, Y. Abramowitz, A. Steinvil, N. Sheinberg, S. Biner, S. Bazan, Y. Ben Gal, A. Halkin, Y. Arbel, E. Ben-Assa, E. Leshem-Rubinow, G. Keren and S. Banai
 Background: Transcatheter aortic valve implantation (TAVI) has recently become an alternative to surgical aortic valve replacement in selected patients with high operative risk.

Objectives: To investigate the 30 day clinical outcome of the first 300 consecutive patients treated with transfemoral TAVI at the Tel Aviv Medical Center.

Methods: The CoreValve was used in 250 patients and the Edwards-Sapien valve in 50 patients. The mean age of the patients was 83 ± 5.3 years (range 63–98 years) and the mean valve area 0.69 ± 0.18 cm2 (range 0.3–0.9 cm2); 62% were women.

Results: The procedural success rate was 100%, and 30 day follow-up was done in all the patients. The average Euro-score for the cohort was 26 ± 13 (range 1.5–67). Total in-hospital mortality and 30 day mortality were both 2.3% (7 patients). Sixty-seven patients (22%) underwent permanent pacemaker implantation after the TAVI procedure, mostly due to new onset of left bundle brunch block and prolonged PR interval or to high degree atrioventricular block. The rate of stroke was 1.7% (5 patients). Forty-one patients (13.7%) had vascular complications, of whom 9 (3%) were defined as major vascular complications (according to the VARC definition).

Conclusions: The 30 day clinical outcome in the first 300 consecutive TAVI patients in our center was favorable, with a mortality rate of 2.3% and low rates of stroke (1.7%) and major vascular complications (3%).

 

 







 VARC = Valve Academic Research Consortium


September 2013
A. L. Schwartz, Y. Topilsky, G. Uretzky, N. Nesher, Y. Ben-Gal, S. Biner, G. Keren and A. Kramer

Background: Stentless aortic bioprostheses were designed to provide improved hemodynamic performance and potentially better survival.

Objectives: To report the outcomes of patients after aortic valve replacement with the Freestyle® stentless bioprosthesis in the Tel Aviv Medical Center followed for ≤ 15 years.

Methods and Results: Between 1997 and 2011, 268 patients underwent primary aortic valve replacement with a Freestyle bioprosthesis, 211 (79%) of them in the sub-coronary position. Mean age, Charlson comorbidity index and Euro-score were 71.0 ± 9.2 years, 4.2 ± 1.5 and 10.2 ± 11 respectively, and 156 (58%) were male. Peak and mean trans-aortic gradient decreased significantly (75.0 ± 29.1 vs. 22.8 ± 9.6 mmHg, P < 0.0001; and 43.4 ± 17.2 vs. 12.1 ± 5.4 mmHg, P < 0.0001 respectively) in 3 months of follow-up. Mean overall follow-up was 4.9 ± 3.1 years and was complete in all patients. In-hospital mortality was 4.1% (n=11) but differed significantly between the first 100 patients operated before 2006 and the last 168 patients operated after January 2006 (8 vs. 3 patients, 8.0% vs. 1.8%, P = 0.01). Overall, 5 and 10 year survival rates were 85 ± 2.5% and 57.2 ± 5.7%, respectively. Five year survival was markedly improved in patients operated after January 2006 compared to those operated in the early years of the experience (92.3 ± 2.3% vs. 76.0 ± 4.4%, P = 0.0009). All the 21 octogenarians operated after January 2006 survived surgery, with excellent 5 year survival (85.1 ± 7.9%). Six patients required reoperation during follow-up: structural valve deterioration in five and endocarditis in one.

Conclusions: Aortic valve replacement with the Freestyle bioprosthesis provides good long-term hemodynamic and clinical outcomes, even in octogenarians. Valve calcification is the major (and rare) mode of valve deterioration leading to reoperation in these patients. 

August 2013
A. Segev, D. Spiegelstein, P. Fefer, A. Shinfeld, I. Hay, E. Raanani and V. Guetta

Background: Trans-catheter aortic valve implantation (TAVI) has emerged as a novel therapeutic approach for patients with severe tricuspid aortic stenosis (AS) not suitable for aortic valve replacement.

Objectives: To describe our initial single-center experience with TAVI in patients with "off-label" indications.

Methods: Between August 2008 and December 2011 we performed TAVI in 186 patients using trans-femoral, trans-axillary, trans-apical and trans-aortic approaches. In 11 patients (5.9%) TAVI was undertaken due to: a) pure severe aortic regurgitation (AR) (n=2), b) prosthetic aortic valve (AV) failure (n=5), c) bicuspid AV stenosis (n=2), and d) prosthetic valve severe mitral regurgitation (MR) (n=2).

Results: Implantation was successful in all: six patients received a CoreValve and five patients an Edwards-Sapien valve. In-hospital mortality was 0%. Valve hemodynamics and function were excellent in all patients except for one who received an Edwards-Sapien that was inside a Mitroflow prosthetic AV and led to consistently high trans-aortic gradients. No significant residual regurgitation in AR and MR cases was observed.
Conclusions: TAVI is a good alternative to surgical AV replacement in high risk or inoperable patients with severe AS. TAVI for non-classical indications such as pure AR, bicuspid AV, and failed prosthetic aortic and mitral valves is feasible and safe and may be considered in selected patients. 

July 2013
N. Roguin Maor
 Background: Smoking is a serious health issue worldwide. Smoking trends among physicians predict similar trends in the general population. Little is known about current smoking rates among physicians.

Objectives: To investigate current smoking trends among Israeli physicians.

Methods: All practicing physicians at a tertiary university-affiliated medical center in central Israel were invited to complete a Web-based questionnaire on smoking habits and smoking-related issues via the institutional email. Findings were compared to those in the general population and between subgroups.

Results: Of the 90 responders (53 male, 88 Jewish), 54 (60%) had never smoked, 21 (23.3%) were past smokers, and 15 (16.7%) were current smokers. The rate of current smokers was lower than in the general population. The proportion of current smokers was higher among residents than attending physicians and among physicians in surgical compared to medical specialties. Past smokers accounted for 17.9% of the residents (average age at quitting 26.2 years) and 28.1% of the attending physicians (average age at quitting 33.0 years). Non-smokers more frequently supported harsh anti-smoking legislation.

Conclusions: The rate of smoking is lower in physicians than in the general population but has not changed over the last 15 years. Anti-smoking programs should particularly target physicians in surgical specialties. 

September 2010
D. Mutlak, D. Aronson, J. Lessick, S.A. Reisner, S. Dabbah and Y. Agmon

Background: Trans-aortic pressure gradient in patients with aortic stenosis and left ventricular systolic dysfunction is typically low but occasionally high.

Objectives: To examine the distribution of trans-aortic PG[1] in patients with severe AS[2] and severe LV[3] dysfunction and compare the clinical and echocardiographic characteristics and outcome of patients with high versus low PG.

Methods: Using the echocardiographic laboratory database at our institution, 72 patients with severe AS (aortic valve area ≤ 1.0 cm2) and severe LV dysfunction (LV ejection fraction ≤ 30%) were identified. The characteristics and outcome of these patients were compared.

Results: PG was high (mean PG ≥ 35 mmHg) in 32 patients (44.4%) and low (< 35 mmHg) in 40 (55.6%). Aortic valve area was slightly smaller in patients with high PG (0.63 ± 0.15 vs. 0.75 ± 0.16 cm2 in patients with low PG, P = 0.003), and LV ejection fraction was slightly higher in patients with high PG (26 ± 5 vs. 22 ± 5% in patients with low PG, P = 0.005). During a median follow-up period of 9 months 14 patients (19%) underwent aortic valve replacement and 46 patients (64%) died. Aortic valve replacement was associated with lower mortality (age and gender-adjusted hazard ratio 0.19, 95% confidence interval 0.05–0.82), whereas trans-aortic PG was not (P = 0.41).

Conclusions: A large proportion of patients with severe AS have relatively high trans-aortic PG despite severe LV dysfunction, a finding partially related to more severe AS and better LV function. Trans-aortic PG is not related to outcome in these patients.






[1] PG = pressure gradient



[2] AAS = aortic stenosis



[3] LV = left ventricular


August 2010
H. Danenberg, A. Finkelstein, R. Kornowski, A. Segev, D. Dvir, D. Gilon, G. Keren, A. Sagie, M. Feinberg, E. Schwammenthal, S. Banai, C. Lotan and V. Guetta

Background: The prevalence of aortic stenosis increases with advancing age. Once symptoms occur the prognosis in patients with severe aortic stenosis is poor. The current and recommended treatment of choice for these patients is surgical aortic valve replacement. However, many patients, mainly the very elderly and those with major comorbidities, are considered to be at high surgical risk and are therefore denied treatment. Recently, a transcatheter alternative to surgical AVR[1] has emerged.

Objectives: To describe the first year experience and 30 day outcome of transcatheter aortic self-expandable CoreValve implantation in Israel.

Methods: Transcatheter aortic valve implantation using the CoreValve system has been performed in Israel since September 2008. In the following year 55 patients underwent CoreValve TAVI[2] in four Israeli centers.

Results: Patients' mean age was 81.7 ± 7.1 years; there were 35 females and 20 males. The mean valve area by echocardiogram was 0.63 ± 0.16 cm2. The calculated mean logistic Euroscore was 19.3 ± 8%. Following TAVI, mean transvalvular gradient decreased from baseline levels of 51 ± 13 to 9 ± 3 mmHg. The rate of procedural success was 98%. One patient died on the first day post-procedure (1.8%) and all-cause 30 day mortality was 5.5% (3 of 55 patients). One patient had a significant post-procedural aortic regurgitation of > grade 2. Symptomatic improvement was evident in most patients, with reduction in functional capacity grade from 3.2 ± 0.6 at baseline to 1.4 ± 0.7. The most common post-procedural complication was complete heart block, which necessitated permanent pacemaker implantation in 37% of patients.

Conclusions: The Israeli first year experience of transcatheter aortic valve implantation using the CoreValve self-expandable system demonstrates an effective and safe procedure for the treatment of severe aortic stenosis in patients at high surgical risk.






[1] AVR = aortic valve replacement



[2] TAVI = transcatheter aortic valve implantation


April 2009
D. Dvir, A. Assali, H. Vaknin, A. Sagie, Y. Shjapira, A. Battler, E. Porat and R. Kornowski

The incidence of aortic valve stenosis is growing rapidly in the elderly. Nonetheless, many symptomatic patients are not referred for surgery usually because of high surgical risk. Unfortunately, percutaneous balloon valvuloplasty is unsatisfactory due to high recurrence rates. In 2002, Cribier and colleagues were the first to describe percutaneous aortic valve implantation, opening a new era of aortic stenosis management. In the present review we report a patient treated by this novel method, discuss and assess how it is implanated, report the findings of studies conducted to date, and suggest future directions for percutaneous treatment of aortic valve disease.
 

July 2006
Y. Turgeman, P. Levahar, I. Lavi, A. Shneor, R. Colodner, Z. Samra, L. Bloch and T. Rosenfeld
 Background: Adult calcific aortic stenosis is a well-known clinical entity but its pathophysiology and cellular mechanism have yet to be defined.

Objectives: To determine whether there is an association between the presence and severity of adult calcific aortic stenosis and Chlamydia pneumoniae seropositivity

Methods: Forty adult patients (23 women, 17 men) were divided into three groups according to echocardiographic aortic valve area: Group A – 7 symptomatic subjects (age 67 ± 7 years) with normal aortic valve and normal coronary angiogram, Group B – 16 patients (age 73 ± 6) with moderate ACAS[1] (AVA[2]> 0.8 £ 1.5 cm2), and Group C – 17 patients (age 76 ± 7) with severe ACAS (AVA £ 0.8 cm2). We tested for immunoglobulins M, G and A as retrospective evidence of C. pneumoniae infection using the micro-immunofluorescence method. Past C. pneumoniae infection was defined by IgG titer > 16 £ 512.

Results: No patients in Group A showed positive Ig[3] for C. pneumoniae. IgM was not detected in any of the patients with ACAS (groups B and C) while 2 of 17 patients (12%) in group C showed IgA for the pathogen. High titers of IgG were found in 14 of 33 (42%) of the patients with moderate or severe ACAS: 5 of 16 (31%) in group B and 9 of 17 (53%) in group C (P = 0.2). Both groups had the same prevalence of coronary artery disease (66%). AVA was lower in IgG-seropositive patients than in the seronegative group (0.88 ± 0.3 cm2 vs. 1.22 ± 0.4 cm2, respectively, P = 0.02).

Conclusions: Past C. pneumoniae infection may be associated with a higher prevalence and greater severity of ACAS.


 





[1] ACAS = adult calcific aortic stenosis

[2] AVA = aortic valve area

[3] Ig = immunoglobulin


Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel
ניתן להשתמש בחצי המקלדת בכדי לנווט בין כפתורי הרכיב
",e=e.removeChild(e.firstChild)):"string"==typeof o.is?e=l.createElement(a,{is:o.is}):(e=l.createElement(a),"select"===a&&(l=e,o.multiple?l.multiple=!0:o.size&&(l.size=o.size))):e=l.createElementNS(e,a),e[Ni]=t,e[Pi]=o,Pl(e,t,!1,!1),t.stateNode=e,l=Ae(a,o),a){case"iframe":case"object":case"embed":Te("load",e),u=o;break;case"video":case"audio":for(u=0;u<$a.length;u++)Te($a[u],e);u=o;break;case"source":Te("error",e),u=o;break;case"img":case"image":case"link":Te("error",e),Te("load",e),u=o;break;case"form":Te("reset",e),Te("submit",e),u=o;break;case"details":Te("toggle",e),u=o;break;case"input":A(e,o),u=M(e,o),Te("invalid",e),Ie(n,"onChange");break;case"option":u=B(e,o);break;case"select":e._wrapperState={wasMultiple:!!o.multiple},u=Uo({},o,{value:void 0}),Te("invalid",e),Ie(n,"onChange");break;case"textarea":V(e,o),u=H(e,o),Te("invalid",e),Ie(n,"onChange");break;default:u=o}Me(a,u);var s=u;for(i in s)if(s.hasOwnProperty(i)){var c=s[i];"style"===i?ze(e,c):"dangerouslySetInnerHTML"===i?(c=c?c.__html:void 0,null!=c&&Aa(e,c)):"children"===i?"string"==typeof c?("textarea"!==a||""!==c)&&X(e,c):"number"==typeof c&&X(e,""+c):"suppressContentEditableWarning"!==i&&"suppressHydrationWarning"!==i&&"autoFocus"!==i&&(ea.hasOwnProperty(i)?null!=c&&Ie(n,i):null!=c&&x(e,i,c,l))}switch(a){case"input":L(e),j(e,o,!1);break;case"textarea":L(e),$(e);break;case"option":null!=o.value&&e.setAttribute("value",""+P(o.value));break;case"select":e.multiple=!!o.multiple,n=o.value,null!=n?q(e,!!o.multiple,n,!1):null!=o.defaultValue&&q(e,!!o.multiple,o.defaultValue,!0);break;default:"function"==typeof u.onClick&&(e.onclick=Fe)}Ve(a,o)&&(t.effectTag|=4)}null!==t.ref&&(t.effectTag|=128)}return null;case 6:if(e&&null!=t.stateNode)Ll(e,t,e.memoizedProps,o);else{if("string"!=typeof o&&null===t.stateNode)throw Error(r(166));n=yn(yu.current),yn(bu.current),Jn(t)?(n=t.stateNode,o=t.memoizedProps,n[Ni]=t,n.nodeValue!==o&&(t.effectTag|=4)):(n=(9===n.nodeType?n:n.ownerDocument).createTextNode(o),n[Ni]=t,t.stateNode=n)}return null;case 13:return zt(vu),o=t.memoizedState,0!==(64&t.effectTag)?(t.expirationTime=n,t):(n=null!==o,o=!1,null===e?void 0!==t.memoizedProps.fallback&&Jn(t):(a=e.memoizedState,o=null!==a,n||null===a||(a=e.child.sibling,null!==a&&(i=t.firstEffect,null!==i?(t.firstEffect=a,a.nextEffect=i):(t.firstEffect=t.lastEffect=a,a.nextEffect=null),a.effectTag=8))),n&&!o&&0!==(2&t.mode)&&(null===e&&!0!==t.memoizedProps.unstable_avoidThisFallback||0!==(1&vu.current)?rs===Qu&&(rs=Yu):(rs!==Qu&&rs!==Yu||(rs=Gu),0!==us&&null!==es&&(To(es,ns),Co(es,us)))),(n||o)&&(t.effectTag|=4),null);case 4:return wn(),Ol(t),null;case 10:return Zt(t),null;case 17:return It(t.type)&&Ft(),null;case 19:if(zt(vu),o=t.memoizedState,null===o)return null;if(a=0!==(64&t.effectTag),i=o.rendering,null===i){if(a)mr(o,!1);else if(rs!==Qu||null!==e&&0!==(64&e.effectTag))for(i=t.child;null!==i;){if(e=_n(i),null!==e){for(t.effectTag|=64,mr(o,!1),a=e.updateQueue,null!==a&&(t.updateQueue=a,t.effectTag|=4),null===o.lastEffect&&(t.firstEffect=null),t.lastEffect=o.lastEffect,o=t.child;null!==o;)a=o,i=n,a.effectTag&=2,a.nextEffect=null,a.firstEffect=null,a.lastEffect=null,e=a.alternate,null===e?(a.childExpirationTime=0,a.expirationTime=i,a.child=null,a.memoizedProps=null,a.memoizedState=null,a.updateQueue=null,a.dependencies=null):(a.childExpirationTime=e.childExpirationTime,a.expirationTime=e.expirationTime,a.child=e.child,a.memoizedProps=e.memoizedProps,a.memoizedState=e.memoizedState,a.updateQueue=e.updateQueue,i=e.dependencies,a.dependencies=null===i?null:{expirationTime:i.expirationTime,firstContext:i.firstContext,responders:i.responders}),o=o.sibling;return Mt(vu,1&vu.current|2),t.child}i=i.sibling}}else{if(!a)if(e=_n(i),null!==e){if(t.effectTag|=64,a=!0,n=e.updateQueue,null!==n&&(t.updateQueue=n,t.effectTag|=4),mr(o,!0),null===o.tail&&"hidden"===o.tailMode&&!i.alternate)return t=t.lastEffect=o.lastEffect,null!==t&&(t.nextEffect=null),null}else 2*ru()-o.renderingStartTime>o.tailExpiration&&1t)&&vs.set(e,t)))}}function Ur(e,t){e.expirationTimee?n:e,2>=e&&t!==e?0:e}function qr(e){if(0!==e.lastExpiredTime)e.callbackExpirationTime=1073741823,e.callbackPriority=99,e.callbackNode=$t(Vr.bind(null,e));else{var t=Br(e),n=e.callbackNode;if(0===t)null!==n&&(e.callbackNode=null,e.callbackExpirationTime=0,e.callbackPriority=90);else{var r=Fr();if(1073741823===t?r=99:1===t||2===t?r=95:(r=10*(1073741821-t)-10*(1073741821-r),r=0>=r?99:250>=r?98:5250>=r?97:95),null!==n){var o=e.callbackPriority;if(e.callbackExpirationTime===t&&o>=r)return;n!==Yl&&Bl(n)}e.callbackExpirationTime=t,e.callbackPriority=r,t=1073741823===t?$t(Vr.bind(null,e)):Wt(r,Hr.bind(null,e),{timeout:10*(1073741821-t)-ru()}),e.callbackNode=t}}}function Hr(e,t){if(ks=0,t)return t=Fr(),No(e,t),qr(e),null;var n=Br(e);if(0!==n){if(t=e.callbackNode,(Ju&(Wu|$u))!==Hu)throw Error(r(327));if(lo(),e===es&&n===ns||Kr(e,n),null!==ts){var o=Ju;Ju|=Wu;for(var a=Yr();;)try{eo();break}catch(t){Xr(e,t)}if(Gt(),Ju=o,Bu.current=a,rs===Ku)throw t=os,Kr(e,n),To(e,n),qr(e),t;if(null===ts)switch(a=e.finishedWork=e.current.alternate,e.finishedExpirationTime=n,o=rs,es=null,o){case Qu:case Ku:throw Error(r(345));case Xu:No(e,2=n){e.lastPingedTime=n,Kr(e,n);break}}if(i=Br(e),0!==i&&i!==n)break;if(0!==o&&o!==n){e.lastPingedTime=o;break}e.timeoutHandle=Si(oo.bind(null,e),a);break}oo(e);break;case Gu:if(To(e,n),o=e.lastSuspendedTime,n===o&&(e.nextKnownPendingLevel=ro(a)),ss&&(a=e.lastPingedTime,0===a||a>=n)){e.lastPingedTime=n,Kr(e,n);break}if(a=Br(e),0!==a&&a!==n)break;if(0!==o&&o!==n){e.lastPingedTime=o;break}if(1073741823!==is?o=10*(1073741821-is)-ru():1073741823===as?o=0:(o=10*(1073741821-as)-5e3,a=ru(),n=10*(1073741821-n)-a,o=a-o,0>o&&(o=0),o=(120>o?120:480>o?480:1080>o?1080:1920>o?1920:3e3>o?3e3:4320>o?4320:1960*Uu(o/1960))-o,n=o?o=0:(a=0|l.busyDelayMs,i=ru()-(10*(1073741821-i)-(0|l.timeoutMs||5e3)),o=i<=a?0:a+o-i),10 component higher in the tree to provide a loading indicator or placeholder to display."+N(i))}rs!==Zu&&(rs=Xu),l=yr(l,i),f=a;do{switch(f.tag){case 3:u=l,f.effectTag|=4096,f.expirationTime=t;var w=Ar(f,u,t);ln(f,w); break e;case 1:u=l;var E=f.type,k=f.stateNode;if(0===(64&f.effectTag)&&("function"==typeof E.getDerivedStateFromError||null!==k&&"function"==typeof k.componentDidCatch&&(null===ms||!ms.has(k)))){f.effectTag|=4096,f.expirationTime=t;var _=Ir(f,u,t);ln(f,_);break e}}f=f.return}while(null!==f)}ts=no(ts)}catch(e){t=e;continue}break}}function Yr(){var e=Bu.current;return Bu.current=Cu,null===e?Cu:e}function Gr(e,t){eus&&(us=e)}function Jr(){for(;null!==ts;)ts=to(ts)}function eo(){for(;null!==ts&&!Gl();)ts=to(ts)}function to(e){var t=Fu(e.alternate,e,ns);return e.memoizedProps=e.pendingProps,null===t&&(t=no(e)),qu.current=null,t}function no(e){ts=e;do{var t=ts.alternate;if(e=ts.return,0===(2048&ts.effectTag)){if(t=br(t,ts,ns),1===ns||1!==ts.childExpirationTime){for(var n=0,r=ts.child;null!==r;){var o=r.expirationTime,a=r.childExpirationTime;o>n&&(n=o),a>n&&(n=a),r=r.sibling}ts.childExpirationTime=n}if(null!==t)return t;null!==e&&0===(2048&e.effectTag)&&(null===e.firstEffect&&(e.firstEffect=ts.firstEffect),null!==ts.lastEffect&&(null!==e.lastEffect&&(e.lastEffect.nextEffect=ts.firstEffect),e.lastEffect=ts.lastEffect),1e?t:e}function oo(e){var t=qt();return Vt(99,ao.bind(null,e,t)),null}function ao(e,t){do lo();while(null!==gs);if((Ju&(Wu|$u))!==Hu)throw Error(r(327));var n=e.finishedWork,o=e.finishedExpirationTime;if(null===n)return null;if(e.finishedWork=null,e.finishedExpirationTime=0,n===e.current)throw Error(r(177));e.callbackNode=null,e.callbackExpirationTime=0,e.callbackPriority=90,e.nextKnownPendingLevel=0;var a=ro(n);if(e.firstPendingTime=a,o<=e.lastSuspendedTime?e.firstSuspendedTime=e.lastSuspendedTime=e.nextKnownPendingLevel=0:o<=e.firstSuspendedTime&&(e.firstSuspendedTime=o-1),o<=e.lastPingedTime&&(e.lastPingedTime=0),o<=e.lastExpiredTime&&(e.lastExpiredTime=0),e===es&&(ts=es=null,ns=0),1u&&(c=u,u=l,l=c),c=Ue(w,l),f=Ue(w,u),c&&f&&(1!==k.rangeCount||k.anchorNode!==c.node||k.anchorOffset!==c.offset||k.focusNode!==f.node||k.focusOffset!==f.offset)&&(E=E.createRange(),E.setStart(c.node,c.offset),k.removeAllRanges(),l>u?(k.addRange(E),k.extend(f.node,f.offset)):(E.setEnd(f.node,f.offset),k.addRange(E)))))),E=[];for(k=w;k=k.parentNode;)1===k.nodeType&&E.push({element:k,left:k.scrollLeft,top:k.scrollTop});for("function"==typeof w.focus&&w.focus(),w=0;w=t&&e<=t}function To(e,t){var n=e.firstSuspendedTime,r=e.lastSuspendedTime;nt||0===n)&&(e.lastSuspendedTime=t),t<=e.lastPingedTime&&(e.lastPingedTime=0),t<=e.lastExpiredTime&&(e.lastExpiredTime=0)}function Co(e,t){t>e.firstPendingTime&&(e.firstPendingTime=t);var n=e.firstSuspendedTime;0!==n&&(t>=n?e.firstSuspendedTime=e.lastSuspendedTime=e.nextKnownPendingLevel=0:t>=e.lastSuspendedTime&&(e.lastSuspendedTime=t+1),t>e.nextKnownPendingLevel&&(e.nextKnownPendingLevel=t))}function No(e,t){var n=e.lastExpiredTime;(0===n||n>t)&&(e.lastExpiredTime=t)}function Po(e,t,n,o){var a=t.current,i=Fr(),l=su.suspense;i=jr(i,a,l);e:if(n){n=n._reactInternalFiber;t:{if(J(n)!==n||1!==n.tag)throw Error(r(170));var u=n;do{switch(u.tag){case 3:u=u.stateNode.context;break t;case 1:if(It(u.type)){u=u.stateNode.__reactInternalMemoizedMergedChildContext;break t}}u=u.return}while(null!==u);throw Error(r(171))}if(1===n.tag){var s=n.type;if(It(s)){n=Dt(n,s,u);break e}}n=u}else n=Al;return null===t.context?t.context=n:t.pendingContext=n,t=on(i,l),t.payload={element:e},o=void 0===o?null:o,null!==o&&(t.callback=o),an(a,t),Dr(a,i),i}function Oo(e){if(e=e.current,!e.child)return null;switch(e.child.tag){case 5:return e.child.stateNode;default:return e.child.stateNode}}function Ro(e,t){e=e.memoizedState,null!==e&&null!==e.dehydrated&&e.retryTime