IMAJ | volume 26
Journal 2, February 2024
pages: 122-125
Summary
Medical imaging data has been at the frontier of artificial intelligence innovation in medicine with many clinical applications. There have been many challenges, including patient data protection, algorithm performance, radiology workflow, user interface, and IT integration, which have been addressed and mitigated over the last decade. The AI products in imaging now fall into three main categories: triage artificial intelligence (AI), productivity AI, and augmented AI, each providing a different utility for radiologists, clinicians, and patients. Adoption of AI products into the healthcare system has been slow, but it is growing. It is typically dictated by return on investment, which can be demonstrated in each use case. It is expected to lead to wider adoption of AI products in imaging into the clinical workflow in the future.