
158 

21 2019INNOVATIONS IN ISRAEL

The hygiene theory represents one of the environmental 
facets that modulate the risk for developing autoimmune 
diseases. There is a reverse correlation between the presence 
of helminthes and flares of autoimmune diseases, which 
explains the rise in incidence of certain autoimmune diseases 
in developed countries. The protective properties of certain 
helminthes are attributed to their secretory compounds 
which immunomodulate the host immune network in order to 
survive. Thus, the helminthes use an array of mechanisms. One 
of the major mechanisms enabling manipulation of the host–
helminth interaction is by targeting the pattern recognition 
receptors (PRRs)-dependent and -independent mechanisms, 
which include toll-like receptors, C-type lectin receptors, and 
the inflammasome. The current review provides a glimpse of 
numerous helminth secreted products which have a role in the 
immunomodulation of the host immune network, focusing on 
bifunctional tuftsin-phosphorylcholine (TPC). TPC is a natural 
compound based on phosphorylcholine of helminth origin that 
was used in the past to cover stents and tuftsin, a self-peptide 
derived from the spleen. TPC was proven to be efficient in 
three murine experimental models (lupus, colitis, and arthritis) 
and ex vivo in giant cell arteritis. 
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G eoepidemiological studies show a reverse correlation 
between less developed countries and the incidence of 

autoimmune diseases [1]. There are more than 80 autoimmune 
diseases whose occurrence increased dramatically in the last 
few decades [1]. One of the major hypotheses to explain this 
trend is the hygiene hypothesis [3]. According to this theory, 
early and repeated exposure to infections enrich the innate 
and adaptive immune network, whereas improved sanitation 
increases autoimmunity (for example, there is no lupus in 
malaria-infected areas) [3,4]. A low parasite burden leads to 
a high-inflammatory condition (e.g., activation of Th1, Th2, 
and Th71), fibrosis and chronic pathology, while a high parasite 
burden results in a low-immune pathology (inhibition of Th1 

and Th17 and modified Th2) [5]. Long-lived parasites such 
as helminthes have the ability to immunomodulate the host 
immune network. Therefore, treatment with helminthes or 
their ova ameliorate murine experimental models and patients 
with autoimmune diseases. The aim of the helminth is to 
survive inside the host environment by protecting itself from 
eradication by the host immune system [4-6]. This review will 
shed light on helminth secretory immunomodulatory small 
molecules, focusing on tuftsin-phosphorylcholine (TPC). 

HELMINTH TREATMENT IN PATIENTS AND MURINE  

EXPERIMENTAL MODEL 

Diving deep into the parasite world, Cox [7] revealed an inter-
esting view of its history. This was evident already in the period 
of ancient Egypt, from 3000 to 400 BC, particularly in the Ebers 
papyrus, an Egyptian medical tome of herbal knowledge dis-
covered at Thebes [8]. Some worm-related diseases emerged, as 
described in the Old Testament when the Israelites crossed the 
Red Sea on their exodus from Egypt in 1250 to 1200 BC [9], 
and in Hippocrates’ writings [10]. The helminthes and their 
products, being pathogenic or protective, raised researchers’ 
curiosity in ancient times as well as today. 

Helminthes (parasitic worms) in certain geographic areas 
exist in reverse correlation with the flare of autoimmune dis-
eases and inflammatory conditions. During recent decades, 
accumulating evidence showed the effectivity of therapy with 
helminthes and their ova in reducing inflammation and in the 
clinical score of autoimmune diseases, such as multiple scle-
rosis (MS), rheumatoid arthritis (RA), type I diabetes mellitus 
(T1DM), and inflammatory bowel diseases (IBD) [6,11-13]. 
Patients with active ulcerative colitis and Crohn’s disease were 
treated with an ingestion of live helminth eggs, Trichuris suis, 
and their disease remitted [14-16]. The helminth therapy was 
not associated with side effects or serious complications attrib-
utable to the therapeutic agent [17]. 

Since MS, an inflammatory and demyelinating disease 
affecting the central nervous system, is mediated via a Th1 pre-
dominant immune mechanism, researchers assumed that MS 
patients could benefit from helminthes by inducing a Th2 shift 
[18,19]. A prospective double-cohort study was performed in 
12 MS patients who presented with eosinophilia and parasitic 
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infection with Hymenolepis nana, Trichuris trichiura, Ascaris 
lumbricoides, Strongyloides stercoralis, or Enterobius vermicu-
laris. Infected patients showed a significant improvement in 
clinical MS manifestations, as well as an increased myelin 
basic protein-specific T cell secretion of anti-inflammatory 
cytokines [interleukin 10 (IL-10) and transforming growth 
factor-beta (TGFβ)], and reduction in inflammatory cytokines 
[IL-12 and interferon-gamma (IFNγ)]. Likewise, the number 
of T regulatory cells were increased [18]. In another study, 16 
MS patients with relapsing-remitting multiple sclerosis (RRMS) 
were assessed for safety and brain magnetic resonance imag-
ing (MRI) activity during oral administration of ova from the 
porcine whipworm, Trichuris suis (TSO). The study was per-
formed during 5 months of screening observation, 10 months 
of treatment, and 4 months of post-treatment surveillance [19]. 
No serious symptoms or adverse events occurred during treat-
ment. A trend was consistent, with a 35% diminution in active 
lesions when observation MRIs were compared with MRIs of 
the treated subjects; at the level of individuals, 12 of 16 subjects 
improved during TSO treatment associated with expansion of 
T regulatory cells during TSO treatment [19]. 

Employing experimental autoimmune models, ameliora-
tion of disease activity was achieved by administration of 
helminthes or their ova. Studies with non-obese diabetic 
(NOD) mice showed that inoculation with Trichinella spiralis, 
Heligmosomoides polygyrus, or Schistosoma mansoni using 
egg antigen or the worm antigen markedly reduced the rate of 
experimental type I diabetes mellitus (T1DM) and suppressed 
lymphoid infiltration in pancreas islets [16,19-22]. Amelioration 
of experimental autoimmune encephalomyelitis (EAE) was 
achieved following helminth treatment [23]. Schistosome 
worm infections prevented colitis, shifting the immune response 
towards Th2 phenotype [24,25]. Syphacia obvelata-infected rats 
developed less severe arthritis than uninfected rats. Extracts 
of the nematode Ascaris suum, Schistosoma mansoni and 
Acanthocheilonema viteae were also found to reduce the severity 
of collagen-induced arthritis (CIA) in mice [26-28].

Ingestion of parasitic worms ameliorated experimental 
autoimmune diseases via several mechanisms, mostly by 
induction of T regulatory cell (Tregs) expansion, stimulation 
of anti-inflammatory cytokines such as IL-4, IL-10, TGFβ, and 
inhibition of circulating pro-inflammatory cytokines IL-1b, 
IFNγ, tumor necrosis factor-alpha (TNFα) and IL-17 [29]. 

HELMINTH SECRETORY IMMUNOMODULATORY SMALL MOLECULES 

A number of animal models along with some human pilot 
studies evaluated the effects of live helminthes and their ova 
on diverse autoimmune diseases. Weinstock et al. in 2016 
[30] proposed that the helminth Heligmosomoides polygyrus 
bakeri prevents colitis in mice via induction of regulatory 
dendritic cells (DCs). These tolerogenic DCs were associ-
ated with decreased expression of the intracellular signaling 

pathway spleen tyrosine kinase (Syk) in intestinal DCs from 
H. polygyrus bakeri-infected mice. DCs sense gut flora and 
damaged epithelium via expression of C-type lectin receptors. 
Focusing on a C-type lectin (CLEC) 7A, which encodes for the 
dectin-1 receptor on DCs and drives Th1/Th17 development, 
the authors provided evidence that soluble worm products can 
block CLEC7A and Syk mRNA expression in gut DCs from 
uninfected mice after a brief in vitro exposure. Inhibition of 
Syk expression and phosphorylation in intestinal DCs may be 
one mechanism through which helminthes induce regulatory 
DCs that down-modulate colitis [30].

Another example of helminth secretory products that 
modulate the host immune response was introduced by 
another group [31-33]. They described a glycoprotein, ES62, 
secreted by the parasitic worm Acanthocheilonema viteae in 
which phosphorylcholine is presented as a moiety by glycans 
on the protein. This secretory molecule exerts anti-inflamma-
tory activity in murine models of chronic asthma, lupus and 
arthritis affecting T cells, B cells, macrophages, dendritic cells 
(DCs), and mast cells [31]. This research group has produced 
a synthetic analog for ES62. This synthetic small molecule 
manipulates the pro-inflammatory scenario by inhibiting 
TLR2, 4, and 9 expression via the MYD88 pathway, inhibiting 
NF-κB, which occurs as a result of inhibition of pro-inflam-
matory cytokine production [32,33].

In parallel, Donnelly et al. [34,35] found a 68-mer peptide, 
helminth defense molecule FhHDM-1, secreted by the hel-
minth Fasciola hepatica, which potently modulates the host 
immune response. This peptide ameliorated disease in two 
autoimmune murine models, type 1 diabetes, and relapsing-
remitting immune-mediated demyelination. In this case the 
secretory peptide had no effect on T cell response in the con-
text of cytokine production and specific T cell response, but 
it reduced the clinical score. The FhHDM-1 peptide affects 
the host immune network via interaction with macrophages, 
reducing their capacity to secrete pro-inflammatory cytokines 
such as TNFα and IL-6 [34,35]. FhHDM-1 is a cathelicidin-
like peptide that binds to macrophages, internalizes into 
endolysosomes, inhibits its acidification, and diminishes the 
activation of the NLRP3 inflammasome, resulting in reduc-
tion of IL-1β secretion by macrophages but not the synthesis 
of pro-IL-1b [36]. 

HELMINTH-BASED BI-FUNCTIONAL IMMUNOMODULATORY  

SELF-MOLECULE TPC

Phosphorylcholine (PC) is a small molecule moiety presented 
by excretory/secretory products of many helminthes and cell 
wall of most serotypes of Pneumococcus. In the past, PC was 
used to cover stents in order to prevent platelet aggregation 
[37]. Tuftsin, having the sequence Thr-Lys-Pro-Arg, natu-
rally occurs in human blood. This peptide is a fragment of 
the heavy chain Fc (289-292) of immunoglobulin G (IgG). 
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in established lupus mice. IL-1β and IL-6 were reduced and 
anti-inflammatory IL-10 was up-regulated [42]. 

In mice with dextran sulfate-sodium-salt (DSS)-induced 
colitis receiving TPC orally, the daily activity index (DAI) was 
inhibited, the colon length was normal, and the architecture of 
the colonic cells was similar to that of the healthy mice [43]. 
Observing the cytokine profile in gut lysates revealed enhanced 
expression of the anti-inflammatory cytokine IL-10, while the 
inflammatory cytokines were reduced [Figure 1]. 

TPC was given to collagen-induced arthritis (CIA) mice, 
which mimics human arthritis, subcutaneously or oral, pro-
phylactic or established [44-46] [Figure 1]. The results show 
prevention of joint inflammation, inhibition of the clinical 
score, reduction of inflammatory cytokines (IFNγ, IL-1β, 
IL-6 and TNFα), and elevated secretion of IL-10 anti-inflam-
matory cytokine associated with enhanced numbers of T 
regulatory cells (CD4+CD25+FOXP3+) and B regulatory cells 
(CD19+CD10+CD5+TIM+CD1d+). All maintained normal gut 
microbiota profile as compared to treatment with the TPC 
vehicle [46]. 

The common denominator in the studied murine autoimmune 
models of lupus DSS-induced colitis and CIA is reduction in 

Tuftsin is an endogenous immunomodulator of a wide spec-
trum of biological activities, such as enhanced phagocytosis, 
polymorphonuclear cell chemotaxis, pinocytosis, and antimi-
crobial [38,39]. We conjugated phosphorylcholine to tuftsin 
and named this small molecule (~1 KD) TPC.

Successful treatment with TPC was conducted in three murine 
autoimmune models: lupus nephritis, dextran sulfate-sodium-
salt (DSS)-induced colitis, and collagen-induced arthritis 
(CIA) [40-46] [Figure 1]. When administered prophylactically 
to NZBXW/F1 female lupus mice, TPC significantly inhibited 
the development of proteinuria and nephritis, as illustrated by 
PAS staining of the kidneys, up-regulated the expression of 
IL-10 and TGFβ, and inhibited inflammatory cytokines INFγ, 
TNFα, and IL-17, associated with enhanced T regulatory cell 
expansion [40] [Figure 1]. Microbiome analyses following 
TPC treatment in lupus mice resulted in maintenance of nor-
mal microbiota (e.g., decreased abundance of Akkermansia 
and increased abundance of several genera including 
Turicibacter, Bifidobacterium, Unclassified Mogibacteriaceae, 
Unclassified Clostridiaceae, Adlercreutzia, Allobaculum and 
Anaeroplasma) [41]. Likewise, TPC treatment was as effective 
as treatment with methylprednisolone in reducing nephritis 

Figure 1. TPC effect on four murine experimental models and ex vivo giant cell arteritis
The murine autoimmune models include: systemic lupus erythematosus, collagen-induced arthritis, DSS-induced colitis, and 
experimental autoimmune encephalomyelitis. The studies in humans show the TPC effect on PBMCs and biopsies ex vivo from patients 
with giant cell arteritis 

Experimental Autoimmune Experimental Autoim
Encephalomyelitis 

oim
s s -

mune mm
-- EAE

T regulatory cells 

Lupus ( (NZBxWW/F1 mice)p (
Cytokines: IFNg, TNFa IL-17    IL-10Cytokines: gFNgIF , TN
T regulatory cells T regulatory cells 
Proteinuria glomerulonephritis   

Dextransulfatat sodium salt induced mouse colitis

Humanan:    Giant Cell Arteritisu
: Proinflammatory cytokines:: roinflammatory cytokiroinfflammatoflam ory cytokimmatommPrPrPP



 161

21 2019 INNOVATIONS IN ISRAEL

reduced Th1 and Th17 differentiation in PBMCs stimulated by 
phorbol 12-myristate 13-acetate plus ionomycin. In inflamed 
TABs, treatment with TPC down-regulated the production of 
IL-1β, IL-6, IL-13, IL-17A, and CD68 gene expression. The 
effects of TPC were comparable to the effects of dexametha-
sone, included as the standard of care, with the exception of 
a greater reduction of IL-2, IL-18, and IFNγ in CD3/CD28-
activated PBMCs, and CD68 gene in inflamed TABs. 

CONCLUSION 

Currently, available treatment options for patients with autoim-
mune diseases are mostly not curative and unfortunately are 
associated with significant adverse effects that contribute to 
morbidity and mortality. There is a need for small molecules 
with minimal side effects. Imitating the helminth immuno-
modulatory products may offer a rainbow of opportunities to 
develop such drugs for patients with autoimmune diseases. 

The novel TPC molecule, comprising phosphorylcholine 
and tuftsin, which is based on a helminth product, demon-
strated significant efficacy in several murine models of auto-
immunity and GCA ex vivo. Hence, TPC and other described 
helminth products may prove to be potential future drugs to 
combat human autoimmune conditions. 
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clinical score and inflammatory cytokines (IFNγ, IL-1β, IL-6, 
IL-17 and TNFα). Likewise, up-regulation of anti-inflamma-
tory cytokine IL-10 expression was associated with enhanced 
T regulatory cell expansion. 

TPC comprises two immunomodulatory molecules, phos-
phorylcholine and tuftsin, each of which has a definite activity 
and work synergistically. At this stage of research, it has been 
proven that TPC has a bi-functional activity: it inhibits NFkB 
expression via inhibition of TLR4 activity by the phosphoryl-
choline edge of TPC, using a commercial inhibitor and HEK 
cells expressing just TLR4. Likewise, TPC shifts the macro-
phages from M1 inflammatory to anti-inflammatory M2, 
secreting IL-10 by the tuftsin part of the molecule targeting the 
neuropilin-1 [Figure 2] on macrophages and T regulatory cells 
[Figure 2] [45]. 

The fact that IL-1β and TLR4 are inhibited by TPC paved 
the road for the idea that one of the TPC mechanisms of activity 
is via the NLRP3 inflammasome.

Croci et al. [47] studied the effect of TPC ex vivo on both 
peripheral blood mononuclear cells (PBMCs) and temporal 
artery biopsies (TABs) obtained from patients with giant cell 
arteritis (GCA) and age-matched disease controls. GCA is an 
immune-mediated disease affecting large vessels. Croci’s group 
activated the PBMCs ex vivo by CD3/CD28 beads and tested 
inflammatory cytokine secession and IL-10 anti-inflammatory 
cytokine. Treatment ex vivo with TPC decreased the produc-
tion of IL-1β, IL-2, IL-5, IL-6, IL-9, IL-12(p70), IL-13, IL-17A, 
IL-18, IL-21, IL-22, IL-23, IFNγ, TNFα, and GM-CSF by 
activated PBMCs, whereas it negligibly affected cell viability. It 

Figure 2. Model structure of the TCP 
neuropilin complex
Tuftsin is shown as a stick diagram with 
carbon, nitrogen and oxygen atoms in 
green, blue and red, respectively. The 
surface of neuropilin is shown, colored 
by the electrostatic potential: blue for 
positive, red for negative, and white 
for neutral. The surface was made 
transparent to show the binding of 
TPC residue R in a deep cavity and the 
bifurcated hydrogen bond between R  
and neuropilin residue D320
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