Abstract
Background: Although indwelling catheters are increasingly used in modern medicine, they can be a source of microbial contamination and hard-to-treat biofilms, which jeopardize patient lives. At times 70% ethanol is used as a catheter-lock solution due to its bactericidal properties. However, high concentrations of ethanol can result in adverse effects and in malfunction of the catheters.
Objective: To determine whether low concentrations of ethanol can prevent and treat biofilms of Pseudomonas aeruginosa.
Methods: Ethanol was tested at a concentration range of 0.625–80% against laboratory and clinical isolates of P. aeruginosa for various time periods (2–48 hours). The following parameters were evaluated following ethanol exposure: prevention of biofilm formation, reduction of biofilm metabolic activity, and inhibition of biofilm regrowth.
Results: Exposing P. aeruginosa to twofold ethanol gradients demonstrated a significant biofilm inhibition at concentrations as low as 2.5%. Treating pre-formed biofilms of P. aeruginosa with 20% ethanol for 4 hours caused a sharp decay in the metabolic activity of both the laboratory and clinical P. aeruginosa isolates. In addition, treating mature biofilms with 20% ethanol prevented the regrowth of bacteria encased within it.
Conclusions: Low ethanol concentrations (2.5%) can prevent in vitro biofilm formation of P. aeruginosa. Treatment of previously formed biofilms can be achieved using 20% ethanol, thereby keeping the catheters intact and avoiding complications that can result from high ethanol concentrations.
Key words